Ir al contenido

Documat


Conexiones Matemáticas utilizadas por profesores mexicanos de nivel medio superior al resolver tareas sobre la pendiente

  • Salgado-Beltrán, Gerardo [1] ; García-García, Javier [1]
    1. [1] Universidad Autónoma de Guerrero

      Universidad Autónoma de Guerrero

      México

  • Localización: PNA: Revista de investigación en didáctica de la matemática, ISSN-e 1887-3987, Vol. 18, Nº. 3, 2024 (Ejemplar dedicado a: (April, 2024)), págs. 255-283
  • Idioma: español
  • DOI: 10.30827/pna.v18i3.27691
  • Títulos paralelos:
    • Conexões matemáticas usadas por professores mexicanos de Nível Médio Superior na resolução de tarefas sobre à inclinação
    • Mathematical Connections used by Mexican High School Teachers when Solving Tasks about the Slope
  • Enlaces
  • Resumen
    • español

      Esta investigación tuvo por objetivo identificar las conexiones matemáticas que establecen un grupo de profesores mexicanos de Nivel Medio Superior al resolver tareas que involucran el concepto de pendiente. Una conexión matemática se entiende como una relación verdadera entre dos o más ideas, conceptos, definiciones, teoremas, procedimientos, representaciones y significados entre sí, con los de otras disciplinas o de la vida real. Para la colecta de datos se utilizó una entrevista basada en tareas y el análisis temático para analizarlos. Los resultados indicaron que los profesores establecieron seis tipos de conexiones matemáticas: representaciones diferentes, procedimental, significado, característica, parte-todo e implicación

    • português

      O objetivo desta pesquisa foi identificar as conexões matemáticas estabelecidas por um grupo de professores mexicanos de Nível Médio Superior na resolução de tarefas envolvendo o conceito de inclinação. Uma conexão matemática é entendida como uma verdadeira relação entre duas ou mais ideias, conceitos, definições, teoremas, procedimentos, representações e significados entre si, com as de outras disciplinas ou vida real. Para a coleta de dados, utilizou-se entrevista baseada em tarefas e análise temática para analisá-los. Os resultados indicaram que os professores estabeleceram seis tipos de conexões matemáticas: diferentes representações, processuais, significado, característica, parte-tudo e implicação

    • English

      The aim of this research was to identify the mathematical connections made by a group of Mexican high school teachers when solving tasks that involve the concept of slope. A mathematical connection is understood as a true relationship between two or more ideas, concepts, definitions, theorems, procedures, representations, and meanings among them, with those of other disciplines or of real life. A task-based interview was used to collect data, and thematic analysis were used to analyze the data. The results indicated that teachers made six types of mathematical connections: different representations, procedural, meaning, feature, part-whole and implication

  • Referencias bibliográficas
    • Barmby, P., Harries, T., Higgins, S. y Suggate, J. (2009). The array representation and primary children’s understanding and reasoning...
    • Bingölbali, E. y Coşkun, M. (2016). A proposed conceptual framework for enhancing the use of making connections skill in...
    • Braun, V. y Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101.http://dx.doi.org/10.1191/1478088706qp063oa
    • Braun, V. y Clarke, V. (2012). Thematic analysis. En H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf y K. J. Sher (Eds.), APA...
    • Brown, L. (1993). The new shorter Oxford English dictionary on historical principles. Clarendon Press.
    • Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical...
    • Byerley, C., y Thompson, P. (2017). Secondary mathematics teachers’ meanings for measure, slope, and rate of change. The Journal of...
    • Campo-Meneses, K. G. y García-García, J. (2021). La comprensión de las funciones exponencial y logarítmica: una mirada desde...
    • Carlson, M., Oehrtman, M. y Engelke, N. (2010). The precalculus concept assessment: A tool for assessing students’ reasoning...
    • Casey, S. y Nagle, C. (2016). Students’ use of slope conceptualizations when reasoning about the line of best fit. Educational...
    • Cho, P. y Nagle, C. (2017). Procedural and conceptual difficulties with slope: An analysis of students’ mistakes on routine tasks. International...
    • Confrey, J., y Smith, E. (1995). Splitting, covariation, and their role in the development of exponential functions. Journal for...
    • Copur-Gencturk, Y. (2015). The effects of changes in mathematical knowledge teaching: A longitudinal study of teachers’ knowledge and instruction....
    • Coxford, A. F. (1995). The case for connections. En P. A. House y A. F. Coxford (Eds.), Connecting mathematics across the curriculum(pp....
    • Deníz, O. y Kabael, T. (2017). Students’ mathematization process of the concept of slope within the realistic mathematics education....
    • Dolores-Flores, C., Rivera-López, M. I. y García-García, J. (2019). Exploring mathematical connections of pre-university students...
    • Dolores-Flores, C., Rivera-López, M. I., y Moore‐Russo, D. (2020). Conceptualizations of slope in Mexican intended curriculum....
    • Dolores, C. e Ibañez, G. (2020). Conceptualizaciones de la Pendiente en Libros de Texto de Matemáticas. Boletim de Educação Matemática,...
    • Dolores, C. y García-García, J. (2017). Conexiones Intramatemáticas y Extramatemáticas que se producen al Resolver Problemas...
    • Eli, J. A., Mohr-Schroeder, M. J. & Lee, C. W. (2011). Exploring mathematical connections of prospective middle-grades teachers through...
    • García, J. (2018). Conexiones matemáticas y concepciones alternativas asociadas a la derivada y a la integral en estudiantes del...
    • Garcia-Garcia, J. (2024). Mathematical Understanding Based on the Mathematical Connections Made by Mexican High School Students Regarding...
    • García-García, J., y Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus...
    • García-García, J. y Dolores-Flores, C. (2021). Exploring pre-university students’ mathematical connections when solving Calculus application...
    • García-García, J. y Dolores-Flores, D. (2021). Pre-university students’ mathematical connections when sketching the graph of ...
    • Godino, J. D., Batanero, C. y Font, V. (2003). Fundamentos de la enseñanza y el aprendizaje de las matemáticas para maestros. Universidad...
    • Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. En A. E. Kelly...
    • Hoffman, W. (2015). Concept image of slope: Understanding middle school mathematics teachers’perspective through task-based interviews....
    • Karakoç, G. y Alacacı, C. (2015). Real World Connections in High School Mathematics Curriculum and Teaching. Turkish Journal...
    • Koichu, B. y Harel, G. (2007). Triadic interaction in clinical task-based interviews with mathematics teachers. Educational Studies in Mathematics,...
    • Mazón, J. (1997). Cálculo Diferencial. Mc Graw Hill.Merriam, S. B. y Tisdell, E. J. (2016) Qualitative research: A guide to design and implementation(4a...
    • Mhlolo, M. K. (2012). Mathematical connections of a higher cognitive level: A tool we may use to identify these in practice. African Journal...
    • Mhlolo, M. K., Venkat, H. y Schäfer, M. (2012). The nature and quality of the mathematical connections teachers make. Pythagoras, 33(1),...
    • Moore-Russo, D., Conner, A., y Rugg, K. (2011). Can slope be negative in 3-space? Studying concept image of slope through...
    • Mudaly, V., y Moore-Russo, D. (2011). South African teachers’ conceptualisations of gradient: A study of historically disadvantaged...
    • Nagle, C., Casey, S., y Moore‐Russo, D. (2017). Slope and line of best fit: A transfer of knowledge case study. School Science...
    • Nagle, C., Moore-Russo, D., Viglietti, J., y Martin, K. (2013). Calculus students’ and instructors’ conceptualizations of slope: a comparison...
    • NCTM. (2014). Principles to action: Ensuring mathematical success for all. Nacional Council of Teachers of Mathematics.
    • Özgen, K. (2013). Self-Efficacy Beliefs in Mathematical Literacy and Connections Between Mathematics and Real World: The Case of High...
    • Rivera, M. I., Salgado, G., y Dolores, C. (2019). Explorando conceptualizaciones de la pendiente en estudiantes universitarios. Bolema:...
    • Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M. y García-García, J. (2021). Exploring University Mexican Students Quality of...
    • Rodríguez, G., Gil, J. y García, E. (1999). Metodología de la investigación cualitativa. Aljibe. Salazar, V. (2010). Matemáticas...
    • Salgado, G. (2020). Conceptualizaciones de pendiente que poseen los profesores del bachillerato y las que enseñan a sus estudiantes...
    • Salgado, G., Rivera, M. I., y Dolores, C. (2020). Conceptualizaciones de pendiente: Contenido que enseñan los profesores del...
    • Salgado, G., y Dolores, C. (2021). Imagen del concepto de pendiente evocado por profesores del bachillerato. Números: Revista de Didáctica...
    • Stake, R. E. (1995). The art of case study research. Sage Publications.
    • Stump, S. (1999). Secondary mathematics teachers’ knowledge of slope. Mathematics Education Research Journal, 11(2), 124-144.
    • Stump, S. (2001). Developing preservice teachers' pedagogical content knowledge of slope. The Journal of Mathematical Behavior,...
    • Stump, S. (2001). Developing preservice teachers' pedagogical content knowledge of slope. The Journal of Mathematical Behavior,...
    • Teuscher, D., y Reys, R. (2012). Rate of change: AP calculus students’ understandings and misconceptions after completing different...
    • Thompson, P. W. (1994). Images of rate and operational understanding of the Fundamental Theorem of Calculus. Educational Studies...
    • Walter, J. G. y Gerson, H. (2007). Teachers’personal agency: Making sense of slope through additive structures. Educational Studies in Mathematics,...
    • Zaslavsky, O., Sela, H. y Leron, U. (2002). Being sloppy about slope: The effect of changing the scale. Educational Studies in Mathematics,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno