Ir al contenido

Documat


Cosmic-Plasma Environment, Singular Manifold and Symbolic Computation for a Variable-Coefficient (2+1)-Dimensional Zakharov-Kuznetsov-Burgers Equation

  • Xin-Yi Gao [1] ; Xiu-Qing Chen [2] ; Yong-Jiang Guo [1] ; Wen-Rui Shan [1]
    1. [1] Beijing University of Posts and Telecommunications

      Beijing University of Posts and Telecommunications

      China

    2. [2] Sun Yat-sen University, North China University of Technology,
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Recent manifold contributions have been made to the nonlinear partial differential equations in fluid mechanics, plasma astrophysics, optical fiber communication, chemistry, etc., while people have known that most of the baryonic matter in the Universe is believed to exist as the plasmas. Hereby, with symbolic computation, we investigate a variable-coefficient (2+1)-dimensional Zakharov-Kuznetsov-Burgers equation for such cosmic-plasma environments as the neutron stars/pulsar magnetospheres, relativistic jets from the nuclei of active galaxies and quasars, early Universe, center of the Milky Way, white dwarfs, planetary rings, comets, Earth’s auroral zone, interstellar molecular clouds, circumstellar disks and Earth’s ionosphere. Through a noncharacteristic movable singular manifold, auto-Bäcklund transformation and solitons are gotten for the electrostatic wave potential or low-frequency dust-ion-acoustic electrostatic potential, leaning upon such cosmic-plasma coefficient functions as the dispersion, nonlinearity and dissipation coefficients, which are related to, for example, the ion plasma frequency, ion cyclotron frequency, viscosity of the ion fluid, positron density, photoelectron density, electron density, ion temperature, electron temperature, Cosmic plasmas · Singular manifold · Symbolic computation · Variable-cCosmic plasmas · Singular manifold · Symbolic computation · Variable-coefficient (2+1)-dimensional Zakharov-Kuznetsov-Burgers equation · Bäcklund transformation · Solitonsoefficient (2+1)-dimensional Zakharov-Kuznetsov-Burgers equation · Bäcklund transformation · Solitons

  • Referencias bibliográficas
    • 1. Gupta, R.K., Sharma, M.: An extension to direct method of Clarkson and Kruskal and Painlevé analysis for the system of variable coefficient...
    • 2. Wang, D., Gao, Y.T., Yu, X., Deng, G.F., Liu, F.Y.: Painlevé analysis, Bäcklund transformation, Lax pair, periodic- and travelling-wave...
    • 3. Liu, H.D., Tian, B., Cheng, C.D., Zhou, T.Y., Gao, X.T.: Painlevé analysis, bilinear forms, Bäcklund transformations and solitons for a...
    • 4. Gao, X.Y.: In the shallow water: auto-Bäcklund, hetero-Bäcklund and scaling transformations via a (2+1)-dimensional generalized Broer-Kaup...
    • 5. Gao, X.Y.: Auto-Bäcklund transformation with the solitons and similarity reductions for a generalized nonlinear shallow water wave equation....
    • 6. “Astrophysical plasma”, Wikipedia. https://en.wikipedia.org/wiki/Astrophysical-plasma (2024)
    • 7. “Waves in plasmas”, Wikipedia. https://en.wikipedia.org/wiki/Waves-in-plasmas (2024)
    • 8. “Dusty plasma”, Wikipedia. https://en.wikipedia.org/wiki/Dusty-plasma (2024)
    • 9. Du, X.X., Tian, B., Wu, X.Y., Yin, H.M., Zhang, C.R.: Lie group analysis, analytic solutions and conservation laws of the (3+1)-dimensional...
    • 10. Kaur, B., Saini, N.S.: Dust ion-acoustic shock waves in a multicomponent magnetorotating plasma. Z. Naturforsch. A 73, 215 (2018)
    • 11. El-Kalaawy, O.H., Ahmed, E.A.: Shock waves, variational principle and conservation laws of a Schamel-Zakharov-Kuznetsov-Burgers equation...
    • 12. El-Tantawy, S.A.: Effect of ion viscosity on dust ion-acoustic shock waves in a nonextensive magnetoplasma. Astrophys. Space Sci. 361,...
    • 13. Abdullah, Seadawy, A.R., Jun, W.: Mathematical methods and solitary wave solutions of threedimensional Zakharov-Kuznetsov-Burgers equation...
    • 14. Annenkov, V.V., Volchok, E.P., Timofeev, I.V.: Electromagnetic emission from plasma with counterstreaming electron beams in the regime...
    • 15. Ghiglieri, J., Schutte-Engel, J., Speranza, E.: Freezing-in gravitational waves. Phys. Rev. D 109, 023538 (2024)
    • 16. Sarkar, S., Ghosh, S., Khan, M., Gupta, M.R.: Nonlinear low frequency wave propagation in electronegative dusty plasma: effects of adiabatic...
    • 17. Ali, S., Ata-ur-Rahman: Solitons and shocks in dense astrophysical magnetoplasmas with relativistic degenerate electrons and positrons....
    • 18. Ghosh, U.N., Mandal, P.K., Chatterjee, P.: The roles of non-extensivity and dust concentration as bifurcation parameters in dust-ion acoustic...
    • 19. Rahim, Z., Ali, S., Qamar, A.: Dust acoustic solitary and shock excitations in a Thomas-Fermi magnetoplasma. Phys. Plasmas 21, 072305...
    • 20. Seadawy, A.R.: Nonlinear wave solutions of the three-dimensional Zakharov-Kuznetsov-Burgers equation in dusty plasma. Phys. A 439, 124...
    • 21. Moslem, W.M., Sabry, R.: Zakharov-Kuznetsov-Burgers equation for dust ion acoustic waves. Chaos Solitons Fract. 36, 628 (2008)
    • 22. Hadjaz, I., Tribeche, M.: Alternative dust-ion acoustic waves in a magnetized charge varying dusty plasma with nonthermal electrons having...
    • 23. Li, X., Zhang, W., Li, Z., Bian, L.: Qualitative analysis to traveling wave solutions of ZakharovKuznetsov-Burgers equation and its damped...
    • 24. Mandal, P.K., Ghosh, U.N., Chaterjee, P.: Zakharov-Kuznestov-Burger equation for ion-acoustic waves in cylindrical geometry. Earth Moon...
    • 25. El-Bedwehy, N.A., Moslem, W.M.: Zakharov-Kuznetsov-Burgers equation in superthermal electron– positron-ion plasma. Astrophys. Space Sci....
    • 26. Williams, G., Kourakis, I.: Nonlinear dynamics of multidimensional electrostatic excitations in nonthermal plasmas. Plasma Phys. Control....
    • 27. Masood, W., Rizvi, H., Siddiq, M.: Obliquely propagating nonlinear structures in dense dissipative electron positron ion magnetoplasmas....
    • 28. Masood, W., Rizvi, H., Imtiaz, N.: Propagation of nonlinear coherent structures in a collisional magnetoplasma with nonthermal electrons...
    • 29. Masood, W., Rizvi, H., Siddiq, M.: Oblique propagation of nonlinear electrostatic waves in dense astrophysical magnetoplasmas. Phys. Plasmas...
    • 30. Sturrock, P.A.: A model of pulsars. Astrophys. J. 164, 529 (1971)
    • 31. Misner, W., Thorne, K., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)
    • 32. Burns, M.L., Harding, A.K., Ramaty, R.: Positron-Electron Pairs in Astrophysics (Goddard Space Flight Center, 1983, No. CONF-830136-)....
    • 33. Van Horn, H.M.: The physics of white dwarfs. Phys. Today 32, 23 (1979)
    • 34. Shpatakovskaya, G.V.: Semiclassical model of a one-dimensional quantum dot. J. Exp. Theor. Phys. 102, 466 (2006)
    • 35. Koester, D., Chanmugam, G.: Physics of white dwarf stars. Rep. Prog. Phys. 53, 837 (1990)
    • 36. Zheleznyakov, V.V., Koryagin, S.A., Serber, A.V.: Electron-proton collisions in plasma on magnetic white dwarfs. Astron. Lett. 25, 437...
    • 37. Suh, I.S., Mathews, G.J.: Mass-radius relation for magnetic white dwarfs. Astrophys. J. 530, 949 (2000)
    • 38. Padmanabhan, T.: Theoretical Astrophysics, Volume II: Stars and Stellar Systems. Cambridge Univ. Press, Cambridge (2001)
    • 39. Feldman, W.C., Asbridge, J.R., Bame, S.J., Montgomery, M.D.: Double ion streams in the solar wind. J. Geophys. Res.-Space 78, 2017 (1973)
    • 40. Formisano, V., Moreno, G., Palmiotto, F., Hedgecock, P.C.: Solar wind interaction with the Earth’s magnetic field: 1. Magnetosheath. J....
    • 41. Scudder, J.D., Sittler, E.C., Jr., Bridge, H.S.: A survey of the plasma electron environment of Jupiter: a view from Voyager. J. Geophys....
    • 42. Marsch, E., Mühlhäuser, K.H., Schwenn, R., Rosenbauer, H., Pilipp, W., Neubauer, F.M.: Solar wind protons: three-dimensional velocity...
    • 43. Cairns, R.A., Mamun, A.A., Bingham, R., Boström, R., Dendy, R.O., Nairn, C.M., Shukla, P.K.: Electrostatic solitary structures in non-thermal...
    • 44. Bostrom, R.: Observations of weak double layers on auroral field lines. IEEE Trans. Plasma Sci. 20, 756 (1992)
    • 45. Dovner, P.O., Eriksson, A.I., Boström, R., Holback, B.: Freja multiprobe observations of electrostatic solitary structures. Geophys. Res....
    • 46. Lundin, R., Eliasson, L., Hultquist, B., Stastewicz, K.: Plasma energization on auroral field lines as observed by the Viking spacecraft....
    • 47. Hall, D.S., Chaloner, C.P., Bryant, D.A., Lepine, D.R., Trikakis, V.P.: Electrons in the boundary layers near the dayside magnetopause....
    • 48. Zhen, H.L., Tian, B., Zhong, H., Sun, W.R., Li, M.: Dynamics of the Zakharov-Kuznetsov-Burgers equations in dusty plasmas. Phys. Plasmas...
    • 49. Faminskii, A.V.: An initial-boundary value problem in a strip for two-dimensional ZakharovKuznetsov-Burgers equation. Nonl. Anal.- Theor....
    • 50. Wang, G., Fakhar, K.: Lie symmetry analysis, nonlinear self-adjointness and conservation laws to an extended (2+1)-dimensional Zakharov-Kuznetsov-Burgers...
    • 51. Zhang, J., Manafian, J., Raut, S., Roy, S., Mahmoud, K.H., Alsubaie, A.S.: Study of two soliton and shock wave structures by weighted...
    • 52. Fukuda, I., Hirayama, H.: Optimal decay estimate and asymptotic profile for solutions to the generalized Zakharov-Kuznetsov-Burgers equation...
    • 53. Bouteraa, N.: Existence and uniqueness of Zakharov-Kuznetsov-Burgers equation with CaputoFabrizio fractional derivative. Mem. Differ....
    • 54. Almusawa, H., Jhangeer, A.: Nonlinear self-adjointness, conserved quantities and Lie symmetry of dust size distribution on a shock wave...
    • 55. Pradhan, B., Boro, B., Dev, A.N., Manafian, J., Alkader, N.A.: Effect of ion anisotropy pressure in viscous plasmas: evolution of shock...
    • 56. Seadawy, A.R., Lu, D.C., Khater, M.M.: Bifurcations of solitary wave solutions for the three dimensional Zakharov-Kuznetsov-Burgers equation...
    • 57. Zhang, R.G., Yang, L.G., Song, J., Yang, H.L.: (2+1) dimensional Rossby waves with complete Coriolis force and its solution by homotopy...
    • 58. Das, A., Ghosh, N., Ansari, K.: Bifurcation and exact traveling wave solutions for dual power ZakharovKuznetsov-Burgers equation with...
    • 59. Das, A., Saha, A.: Dynamical survey of the dual power Zakharov-Kuznetsov-Burgers equation with external periodic perturbation. Comput....
    • 60. Larkin, N.A.: 2D Zakharov-Kuznetsov-Burgers equations with variable dissipation on a strip. Electron. J. Differ. Eq. 2015(60), 1 (2015)
    • 61. Esfahani, A.: On the ZK equation with a directional dissipation. Appl. Math. Comput. 217, 4911 (2011)
    • 62. Gao, X.Y.: Symbolic computation on a (2+1)-dimensional generalized nonlinear evolution system in fluid dynamics, plasma physics, nonlinear...
    • 63. Gao, X.Y.: In plasma physics and fluid dynamics: symbolic computation on a (2+1)-dimensional variable-coefficient Sawada-Kotera system....
    • 64. Chen, S.J., Yin, Y.H., Lü, X.: Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Commun....
    • 65. “Bäcklund transform”, Wikipedia. https://en.wikipedia.org/wiki/Bäcklund-transform (2024)
    • 66. Han, P.F., Zhang, Y., Jin, C.H.: Novel evolutionary behaviors of localized wave solutions and bilinear auto-Bäcklund transformations for...
    • 67. Gao, X.Y.: In an ocean or a river: bilinear auto-Bäcklund transformations and similarity reductions on an extended time-dependent (3+1)-dimensional...
    • 68. Feng, C.H., Tian, B., Gao, X.T.: Bilinear Bäcklund transformation, fission/fusion and periodic waves of a (3+1)-dimensional Kadomtsev-Petviashvili...
    • 69. Feng, C.H., Tian, B., Yang, D.Y., Gao, X.T.: Bilinear form, bilinear Bäcklund transformations, breather and periodic-wave solutions for...
    • 70. Gao, X.Y.: Hetero-Bäcklund transformation, bilinear forms and multi-solitons for a (2+1)-dimensional generalized modified dispersive...
    • 71. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C.: N-fold generalized Darboux transformation and asymptotic analysis of the degenerate solitons...
    • 72. Peng, X., Zhao, Y.W., Lü, X.: Data-driven solitons and parameter discovery to the (2+1)-dimensional NLSE in optical fiber communications....
    • 73. Gao, X.Y.: Open-ocean shallow-water dynamics via a (2+1)-dimensional generalized variablecoefficient Hirota-Satsuma-Ito system: oceanic...
    • 74. Wu, X.H., Gao, Y.T., Yu, X., Liu, F.Y.: Generalized Darboux transformation and solitons for a KraenkelManna-Merle system in a ferromagnetic...
    • 75. Shan, H.W., Tian, B., Cheng, C.D., Gao, X.T., Chen, Y.Q., Liu, H.D.: N-soliton and other analytic solutions for a (3+1)-dimensional...
    • 76. Han, P.F., Zhang, Y.: Linear superposition formula of solutions for the extended (3+1)-dimensional shallow water wave equation. Nonlinear...
    • 77. Han, P.F., Zhang, Y.: Investigation of shallow water waves near the coast or in lake environments via the KdV-Calogero-Bogoyavlenskii-Schiff...
    • 78. Wu, X.H., Gao, Y.T., Yu, X., Li, L.Q., Ding, C.C.: Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear...
    • 79. Wu, X.H., Gao, Y.T., Yu, X., Liu, F.Y.: On a variable-coefficient AB system in a baroclinic flow: generalized Darboux transformation and...
    • 80. Chen, Y.Q., Wu, Z.T., Xiao, P.Y., Xiao, W.D., Liu, W.J.: Application of femtosecond mode-locked SnTe thin films and generation of bound-state...
    • 81. Xing, X.W., Liu, Y.X., Han, J.F., Liu, W.J., Wei, Z.Y.: Preparation of high damage threshold device based on Bi2Se3 film and its application...
    • 82. Liu, W.J., Xiong, X.L., Liu, M.L., Xing, X.W., Chen, H.L., Ye, H., Han, J.F., Wei, Z.Y.: Bi4Br 4-based saturable absorber with robustness...
    • 83. Yin, Y.H., Lü, X., Jiang, R., Jia, B., Gao, Z.Y.: Kinetic analysis and numerical tests of an adaptive car-following model for real-time...
    • 84. Cao, F., Lü, X., Zhou, Y.X., Cheng, X.Y.: Modified SEIAR infectious disease model for Omicron variants spread dynamics. Nonlinear Dyn....
    • 85. Gao, X.T., Tian, B.: In a river or an ocean: similarity-reduction work on a (3+1)-dimensional extended shallow water wave equation....
    • 86. Liu, K.W., Lü, X., Gao, F., Zhang, J.: Expectation-maximizing network reconstruction and most applicable network types based on binary...
    • 87. Yin, Y.H., Lü, X.: Dynamic analysis on optical pulses via modified PINNs: soliton solutions, rogue waves and parameter discovery of the...
    • 88. Javaid, A., Ayub, M., Hussain, S., Haider, S.: Diffraction of EM-wave by a finite symmetric plate in cold plasma with Neumann conditions....
    • 89. Hussain, S., Nawaz, R., Bibi, A.: Mathematical analysis of acoustic wave interaction of vibrating rigid plates with subsonic flows. Math....
    • 90. Bibi, A., Shakeel, M., Khan, D., Hussain, S., Chou, D.: Study of solitary and kink waves, stability analysis, and fractional effect in...
    • 91. Han, P.F., Zhang, Y.: Superposition behavior of the lump solutions and multiple mixed function solutions for the (3+1)-dimensional...
    • 92. Wu, X.H., Gao, Y.T., Yu, X.: Dark-soliton asymptotics for a repulsive nonlinear system in a baroclinic flow. Phys. Fluids 36, 056615 (2024)
    • 93. Liu, M.L., Wu, H.B., Liu, X.M., Wang, Y.R., Lei, M., Liu, W.J., Guo, W., Wei, Z.Y.: Optical properties and applications of SnS2 SAs with...
    • 94. Gao, X.T., Tian, B., Zhou, T.Y., Shen, Y., Feng, C.H.: For the shallow water waves: bilinear-form and similarity-reduction studies on...
    • 95. Chen, Y., Lü, X.: Wronskian solutions and linear superposition of rational solutions to B-type Kadomtsev-Petviashvili equation. Phys....
    • 96. Gao, X.Y.: Open-ocean shallow-water dynamics via a (2+1)-dimensional generalized variablecoefficient Hirota-Satsuma-Ito system: oceanic...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno