Ir al contenido

Documat


N-Soliton and Other Analytic Solutions for a (3 + 1)-Dimensional Korteweg–de Vries–Calogero–Bogoyavlenskii–Schiff Equation with the Time-Dependent Coefficients for the Shallow Water Waves

  • Autores: Hong-Wen Shan, Bo Tian, Chong-Dong Cheng, Xiao-Tian Gao, Yu-Qi Chen, Hao-Dong Liu
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01125-6
  • Enlaces
  • Resumen
    • Shallow water waves are seen in magnetohydrodynamics, atmospheric science, oceanography and so on. In this article, we study a (3+1)-dimensional Korteweg–de Vries–Calogero–Bogoyavlenskii–Schiff equation with the time-dependent coefficients for the shallow water waves. N-soliton solutions are obtained via the simplified Hirota method.Via the N-soliton solutions,we present the elastic interactions between the two solitons and among the three solitons. Some other analytic solutions are constructed through the tanh method and ( G G2 )-expansion method.

  • Referencias bibliográficas
    • 1. Peng, X., Zhao, Y.W., Lü, X.: Data-driven solitons and parameter discovery to the (2+1)-dimensional NLSE in optical fiber communications....
    • 2. Rehman, H.U., Yasin, S., Iqbal, I.: Optical soliton for (2 + 1)-dimensional coupled integrable NLSE using Sardar-subequation method....
    • 3. Hussain, A., Usman, M.,Ahmed, H.M.E., Ibrahim, T.F., Tahir, R.A., Hassan, A.M.: Symmetry analysis for the (3+1)-dimensional generalized...
    • 4. Kumar, S., Hamid, I., Abdou, M.A.: Specific wave profiles and closed-form soliton solutions for generalized nonlinear wave equation in...
    • 5. Osman, M.S., Almusawa, H., Tariq, K.U., Anwar, S., Kumar, S., Younis, M., Ma, W.X.: On global behavior for complex soliton solutions of...
    • 6. Akram, U., Seadawy, A.R., Rizvi, S.T.R., Younis, M., Althobaiti, A.: Some new dispersive dromions and integrability analysis for the Davey–Stewartson...
    • 7. Alam, M.N., Seadawy, A.R., Baleanu, D.: Closed-form solutions to the solitary wave equation in an unmagnatized dusty plasma. Alex. Eng....
    • 8. Cao, F., Lü, X., Zhou, T.X., Cheng, X.Y.: Modified SEIAR infectious disease model for Omicron variants spread dynamics. Nonlinear Dyn....
    • 9. Liu, K.W., Lü, X., Gao, F., Zhang, J.: Expectation-maximizing network reconstruction and most applicable network types based on binary...
    • 10. Akbar, M.A., Islam, M.E., Benli, F.B., ˙Ilhan, O.A.: A deterministic approach to investigate nonlinear evolution equations for large balance...
    • 11. Chou, D., Ur Rehman, H., Amer, A., Amer, A.: New solitary wave solutions of generalized fractional Tzitzéica-type evolution equations...
    • 12. Bashar,M.H.,Mawa, H.Z., Biswas, A., Rahman,M.M., Roshid,M.M., Islam, J.: Themodified extended tanh technique ruled to exploration of soliton...
    • 13. Humbu, I., Muatjetjeja, B., Motsumi, T.G., Adem, A.R.: Solitary waves solutions and local conserved vectors for extended quantum Zakharov–Kuznetsov...
    • 14. Gao, X.Y.: Two-layer-liquid and lattice considerations through a (3 + 1)-dimensional generalized Yu–Toda–Sasa–Fukuyama system. Appl....
    • 15. Gao, X.Y.: Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2 + 1)-dimensional...
    • 16. Petrosyan, A., Klimachkov, D., Fedotova, M., Zinyakov, T.: Shallow water magnetohydrodynamics in plasma astrophysics. Waves, turbulence,...
    • 17. Klimachkov, D.A., Petrosyan, A.S.: Parametric instabilities in shallow water magnetohydrodynamics of astrophysical plasma in external...
    • 18. Dogan, G.G., Pelinovsky, E., Zaytsev, A., Metin, A.D., Tarakcioglu, G.O., Yalciner, A.C., Yalciner, B., Didenkulova, I.: Long wave generation...
    • 19. Dawod, L.A., Lakestani, M., Manafian, J.: Breather wave solutions for the (3 + 1)-D generalized shallow water wave equation with variable...
    • 20. Zhou, Y., Manukure, S.: Complexiton solutions to the Hirota–Satsuma–Ito equation. Math. Methods Appl. Sci. 42, 2344–2351 (2019)
    • 21. Chen, Y., Lü, X.: Wronskian solutions and linear superposition of rational solutions to B-type Kadomtsev–Petviashvili equation. Phys....
    • 22. Malik, S.,Kumar, S., Akbulut, A., Rezazadeh, H.: Some exact solitons to the (2+1)-dimensionalBroer– Kaup–Kupershmidt system with two...
    • 23. Ma, Y.L., Li, B.Q.: The dynamics on soliton molecules and soliton bifurcation for an extended generalization of Vakhnenko equation. Qual....
    • 24. Ma, Y.L., Li, B.Q.: Soliton interactions, soliton bifurcations and molecules, breather molecules, breather-to-soliton transitions, and...
    • 25. Ma,Y.L.,Wazwaz, A.M., Li,B.Q.: Phase transition from soliton to breather, soliton-breather molecules, breather molecules of the Caudrey–Dodd–Gibbon...
    • 26. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: Soliton resonances, soliton molecules, soliton oscillations and heterotypic solitons for the nonlinear...
    • 27. Ma, Y.L., Li, B.Q.: Interaction behaviors between solitons, breathers and their hybrid forms for a short pulse equation. Qual. Theor....
    • 28. Yin, Y.H., Lü, X., Jiang, R., Jia, B., Gao, Z.Y.: Kinetic analysis and numerical tests of an adaptive car-following model for real-time...
    • 29. Chen, S.J., Yin, Y.H., Lü, X.: Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Commun....
    • 30. Zhao, N., Cheng, L., Chen, J.C., Zhu, S.D.: Bright soliton solutions to the nonlocal Manakov equations of reverse-space type. Appl. Math....
    • 31. Wang, S.N., Yu, G.F.: Rational and semi-rational solutions to the nonlocal Davey–Stewartson III equation. Commun. Nonlinear Sci. Numer....
    • 32. Chu, J.,Liu,Y., Chen, X.: Integrability and exact solutions of the (2+1)-dimensional variable coefficient Ito equation. Nonlinear...
    • 33. Yin, Y.H., Lü, X.: Dynamic analysis on optical pulses via modified PINNs: soliton solutions, rogue waves and parameter discovery of the...
    • 34. Badshah, F., Tariq, U.K., Wazwaz, A.M., Mehboob, F.: Lumps, solitons and stability analysis for the (3 + 1)-dimensional fractional...
    • 35. Gao, X.Y.: Auto-Bäcklund transformation with the solitons and similarity reductions for a generalized nonlinear shallow water wave equation....
    • 36. Gao, X.Y.: In the shallow water: auto-Bäcklund, hetero-Bäcklund and scaling transformations via a (2 + 1)-dimensional generalized...
    • 37. Gao, D., Lü, X., Peng, M.S.: Study on the (2+1)-dimensional extension of Hietarinta equation: soliton solutions and Bäcklund transformation....
    • 38. Nursena, G.A., Emrullah, Y.: The residual symmetry, Bäcklund transformations, CRE integrability and interaction solutions: (2 + 1)-dimensional...
    • 39. Ma, H., Su, N., Deng, A.: Bilinear auto-Bäcklund transformations and the hybrid localized wave solutions for the (3+1)-dimensionalB-type...
    • 40. Tao, S.X.: Lie symmetry analysis, particular solutions and conservation laws for the dissipative (2+1)- dimensional AKNS equation....
    • 41. Xie, W.K., Fan, F.C.: Soliton and breather solutions on the nonconstant background of the local and nonlocal Lakshmanan–Porsezian–Daniel...
    • 42. Karna, A.K., Satapathy, P.: Lie symmetry analysis for the Cargo–Leroux model with isentropic perturbation pressure equation of state....
    • 43. Jin, M., Yang, J.J., Xin, X.P.: The lie symmetry analysis, optimal system and exact solutions of the (2+1)-dimensional variable coefficients...
    • 44. Bai, Y.S., Liu, Y.N., Ma, W.X.: Lie symmetry analysis, exact solutions, and conservation laws to multi-component nonlinear Schrödinger...
    • 45. Hu, H.C., Li, Y.Q.: Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model. Chin. Phys....
    • 46. Dorodnitsyn, V.A., Kaptsov, E.I., Meleshko, S.V.: Lie group symmetry analysis and invariant difference schemes of the two-dimensional...
    • 47. Zhong, D., Yao, N., Qian, G.: Higher-order matrix nonlinear Schrödinger equation with the negative coherent coupling: binary Darboux transformation,...
    • 48. Chen, H.Z., Zheng, S.J.: Darboux transformation for nonlinear Schrödinger type hierarchies. Physica D 454, 133863 (2023)
    • 49. Wu, X., Hu, J., Zhang, N.: Solution of high-order nonlinear integrable systems using Darboux transformation. Axioms 12, 1032 (2023)
    • 50. Chatterjee, P., Saha, D., Wazwaz, A.M., Raut, S.: Explicit solutions of the Schamel–KdV equation employing Darboux transformation. Pramana...
    • 51. Schulze-Halberg, A.: Darboux transformations for a Class of Duffin–Kemmer–Petiau equations governing spin-zero Systems. Few-Body Syst....
    • 52. Liu, T.S., Xia, T.C.:Darboux transformation and explicit solutions for the Kaup–Kupershmidt equation. Phys. Scr. 98, 105244 (2023)
    • 53. Singh, S., Ray, S.S.: Painlevé integrability and analytical solutions of variable coefficients negative order KdV–Calogero–Bogoyavlenskii–Schiff...
    • 54. Cai, N.P., Qiao, Z.J., Zhou, Y.Q.: Wave solutions to an integrable negative order KdV equation. Wave Motion 116, 103072 (2023)
    • 55. Ali, K.K., Yilmazer, R., Osman, M.S.: Dynamic behavior of the (3+1)-dimensional KdV–Calogero– Bogoyavlenskii–Schiff equation. Opt....
    • 56. Wazwaz, A.M.: A variety of completely integrable Calogero–Bogoyavlenskii–Schiff equations with time-dependent coefficients. Int. J. Numer....
    • 57. Kutlu, B., Kaya, D.: A new approach for Painlevé analysis of the generalized Kawahara equation. AIP Conf. Proc. 1676, 020017 (2015)
    • 58. Wazwaz, A.M.: The tanh method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations....
    • 59. Mohyud-Din, S.T., Bibi, S.: Exact solutions for nonlinear fractional differential equations using ( G G2 )-expansion method. Alex. Eng....
    • 60. Lou, M.R., Zhang, Y.P., Kong, L.Q., Dai, C.Q.: Be careful with the equivalence of different ansätz of improved tanh-function method for...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno