Ir al contenido

Documat


Painlevé Analysis, Bäcklund Transformation, Lax Pair, Periodic- and Travelling-Wave Solutions for a Generalized (2+1)-Dimensional Hirota–Satsuma–Ito Equation in Fluid Mechanics

  • Dong Wang [1] ; Yi-Tian Gao [1] ; Xin Yu [1] ; Gao-Fu Deng [1] ; Fei-Yan Liu [1]
    1. [1] Beijing University of Aeronautics and Astronautics
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, under investigation is a generalized (2+1)-dimensional Hirota–Satsuma– Ito (HSI) equation in fluid mechanics. Motivated by its application in simulating the propagation of small-amplitude surface waves and shallow water waves, we focus on the Painlevé integrability, commonly used transformation forms and analytical solutions of the HSI equation. Via the Painlevé analysis, it is found that the HSI equation is Painlevé integrable under certain condition. Bilinear form, Bell-polynomial-type Bäcklund transformation and Lax pair are constructed with the binary Bell polynomials. One-periodic-wave solutions are derived via the Hirota–Riemann method and displayed graphically. Through the polynomial-expansion method, travelling-wave solutions are obtained.

  • Referencias bibliográficas
    • 1. Yusuf, A., Sulaiman, T.A.: Dynamics of Lump-periodic, breather and two-wave solutions with the long wave in shallow water under gravity...
    • 2. Baals, C., Moreno, A.G., Jiang, J., Benary, J., Ott, H.: Stability analysis and attractor dynamics of three-dimensional dark solitons with...
    • 3. Kruglov, V.I., Triki, H.: Periodic and solitary waves in an inhomogeneous optical waveguide with third-order dispersion and self-steepening...
    • 4. Zhao, Z.L., He, L.C., Wazwaz, A.M.: Dynamics of lump chains for the BKP equation describing propagation of nonlinear waves. Chin. Phys....
    • 5. Masnadi, N., Duncan, J.H.: Observations of gravity-capillary lump interactions. J. Fluid Mech. 814, R1 (2017)
    • 6. Diorio, J., Cho, Y., Duncan, J.H., Akylas, T.R.: Gravity-capillary lumps generated by a moving pressure source. Phys. Rev. Lett. 103, 214502...
    • 7. Khan, Y., Faraz, N., Sulaimani, H. A.I.-: Two core optical fibers coupled nonlinear model in the framework of Hausdorff fractal derivative....
    • 8. Houwe, A., Yakada, S., Abbagari, S., Saliou, Y., Inc, M., Doka, S.Y.: Survey of third- and fourthorder dispersions including ellipticity...
    • 9. Abbas, G., Kevrekidis, P.G., Allen, J.E., Koukouloyannis, V., Frantzeskakis, D.J., Karachalios, N.: Propagation of periodic wave trains...
    • 10. Dudley, J.M., Genty, G., Mussot, A., Chabchoub, A., Dias, F.: Rogue waves and analogies in optics and oceanography. Nat. Rev. Phys. 1,...
    • 11. Cousins, W., Onorato, M., Chabchoub, A., Sapsis, T.P.: Predicting ocean rogue waves from point measurements: an experimental study for...
    • 12. Dematteis, G., Grafke, T., Onorato, M., Vanden-Eijnden, E.: Experimental evidence of hydrodynamic instantons: the universal route to rogue...
    • 13. Gao, X.Y.: Mathematical view with observational/experimental consideration on certain (2+1)- dimensional waves in the cosmic/laboratory...
    • 14. Mir, A.A., Tiwari, S.K., Goree, J., Sen, A., Crabtree, C., Ganguli, G.: A forced Korteweg–de Vries model for nonlinear mixing of oscillations...
    • 15. Beji, S.: Kadomtsev–Petviashvili type equation for entire range of relative water depths. Coast. Eng. J. 60, 60–68 (2018)
    • 16. Chen, S.S., Tian, B., Liu, L., Yuan, Y.Q., Zhang, C.R.: Conservation laws, binary Darboux transformations and solitons for a higher-order...
    • 17. Chekhovskoy, I., Medvedev, S.B., Vaseva, I.A., Sedov, E.V., Fedoruk, M.P.: Introducing phase jump tracking—a fast method for eigenvalue...
    • 18. Wazwaz, A.M., Kaur, L.: A new nonlinear integrable fifth-order equation: multiple soliton solutions with unusual phase shifts. Phys. Scr....
    • 19. Du, X.X., Tian, B., Qu, Q.X., Yuan, Y.Q., Zhao, X.H.: Lie group analysis, solitons, self-adjointness and conservation laws of the modified...
    • 20. Zhang, C.R., Tian, B., Qu, Q.X., Liu, L., Tian, H.Y.: Vector bright solitons and their interactions of the couple Fokas–Lenells system...
    • 21. Zhao, Z.L., Yue, J., He, L.C.: New type of multiple lump and rogue wave solutions of the (2+1)- dimensional Bogoyavlenskii–Kadomtsev–Petviashvili...
    • 22. Long, F., Alsallami, S.A.M., Rezaei, S., Nonlaopon, K., Khalil, E.M.: New interaction solutions to the (2+1)-dimensional Hirota–Satsuma–Ito...
    • 23. Ma, W.X., Li, J., Khalique, C.M.: A study on lump solutions to a generalized Hirota–Satsuma–Ito equation in (2+1)-dimensions. Complexity...
    • 24. Kuo, C.K., Ma, W.X.: A study on resonant multi-soliton solutions to the (2+1)-dimensional Hirota– Satsuma–Ito equations via the linear...
    • 25. Zhao, X., Tian, B., Du, X.X., Hu, C.C., Liu, S.H.: Bilinear Bäcklund transformation, kink and breatherwave solutions for a generalized...
    • 26. Wang, M., Tian, B., Liu, S.H., Shan, W.R., Jiang, Y.: Soliton, multiple-lump and hybrid solutions of a (2+1)-dimensional generalized...
    • 27. Aliyu, A.I., Li, Y.: Bell polynomials and lump-type solutions to the Hirota–Satsuma–Ito equation under general and positive quadratic...
    • 28. Chen, X., Liu, Y.Q., Zhuang, J.H.: Soliton solutions and their degenerations in the (2+1)-dimensional Hirota–Satsuma–Ito equations...
    • 29. Liu, W., Wazwaz, A.M., Zheng, X.: High-order breathers, lumps, and semi-rational solutions to the (2+1)-dimensional Hirota–Satsuma–Ito...
    • 30. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)
    • 31. Ablowitz, M.J., Segur, H.: Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38, 1103 (1977)
    • 32. Xu, G.Q., Liu, Y.P., Cui, W.Y.: Painlevé analysis, integrability property and multiwave interaction solutions for a new (4+1)-dimensional...
    • 33. Huang, Q.M., Gao, Y.T., Jia, S.L., Wang, Y.L., Deng, G.F.: Bilinear Bäcklund transformation, soliton and periodic wave solutions for a...
    • 34. Xu, G.Q., Wazwaz, A.M.: A new (n+1)-dimensional generalized Kadomtsev–Petviashvili equation: integrability characteristics and localized...
    • 35. Qin, B., Tian, B., Wang, Y.F., Shen, Y.J., Wang, M.: Bell-polynomial approach and Wronskian determinant solutions for three sets of differential-difference...
    • 36. Tian, S., Zhang, H.: Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations. J. Math....
    • 37. Shen, Y., Tian, B., Zhang, C.R., Tian, H.Y., Liu, S.H.: Breather-wave, periodic-wave and travelingwave solutions for a (2+1)-dimensional...
    • 38. Zhao, Z.L., He, L.C.: Bäcklund transformations and Riemann–Bäcklund method to a (3+1)- dimensional generalized breaking soliton equation....
    • 39. Hu, W.Q., Gao, Y.T., Zhao, C., Jia, S.L., Lan, Z.Z.: Breathers, quasi-periodic and travelling waves for a generalized (3+1)-dimensional...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno