Ir al contenido

Documat


An Extension to Direct Method of Clarkson and Kruskal and Painleve´ Analysis for the System of Variable Coefficient Nonlinear Partial Differential Equations

  • Rajesh Kumar Gupta [1] ; Manjeet Sharma [1]
    1. [1] Central University of Haryana

      Central University of Haryana

      India

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this work, direct method of Clarkson and Kruskal has been extended for the system of variable coefficient nonlinear partial differential equations. This extension can be applied to various higher order systems with variable coefficients to obtain novel exact solutions. An example of coupled KdV-Burgers system with variable coefficients has been considered to obtain the new exact solutions by utilizing proposed direct method.

      The coupled KdV-Burgers system with variable coefficients is especially relevant for modeling shallow water waves in channels with variable width or depth. Moreover, it plays a crucial role in studying the interactions between long-wave and short-wave phenomena in fluid flows with varying viscosity or density. The previously known exact solutions of considered system with constant coefficients have been exploited to derive new solutions of considered system. In this manuscript, the direct method is applied in a generalized manner for the first time to a system of partial differential equations with variable coefficients. The novel exact solutions are in the form of arbitrary function from which the different types of solutions of governed equation can be obtained. The obtained exact solutions have been displayed graphically by taking particular values of arbitrary constants and function. The comprehensive graphical analysis of the wave solutions has been conducted by extracting various standard wave configurations, including kink, bright-dark soliton, dark-bright soliton and periodic waves. The Painleve´ analysis of governing system has been also performed by utilizing WTC-Kruskal algorithm which describes non-integrability of system.

  • Referencias bibliográficas
    • 1. Lie, S.: Über die integration durch bestimmte integrale von einer klasse linearer partieller differentialgleichungen. Arch. Math. 6, 328...
    • 2. Ovsajannikov, L.V.: Group Properties of Differential Equations. Siberian Section of the Academy of Science of USSR, Novosibirsk (1962)
    • 3. Olver, P.J.: Applications of Lie Groups to Differential Equations, vol. 107. Springer, New York (1993)
    • 4. Bluman, G.W., Anco, S.C.: Symmetry and Integration Methods for Differential Equations, vol. 154. Springer, Cham (2008)
    • 5. Bluman, G.W., Cole, J.D.: The general similarity solution of heat equation. J. Math. Mech. 18(11), 1025 (1969)
    • 6. Bruzón, M.S., Gandarias, M.L., Camacho, J.C.: Classical and nonclassical symmetries for a Kuramoto– Sivashinsky equation with dispersive...
    • 7. Kontogiorgis, S., Sophocleous, C.: Lie symmetry analysis of Burgers-type systems. Math. Methods Appl. Sci. 41(3), 1197 (2018)
    • 8. Ren, B., Xu, X.J., Lin, J.: Symmetry group and exact solutions for the 2+ 1 dimensional Ablowitz– Kaup–Newell–Segur equation. J. Math....
    • 9. Chen, Y., Lü, X.: Wronskian solutions and linear superposition of rational solutions to B-type Kadomtsev–Petviashvili equation. Phys. Fluids...
    • 10. Cao, F., Lü, X., Zhou, Y.X., Cheng, X.Y.: Modified SEIAR infectious disease model for Omicron variants spread dynamics. Nonlinear Dyn....
    • 11. Gao, D., Lü, X., Peng, M.S.: Study on the (2+ 1)-dimensional extension of Hietarinta equation: soliton solutions and Bäcklund transformation....
    • 12. Chen, S.J., Yin, Y.H., Lü, X.: Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Commun....
    • 13. Chen, S.J., Lü, X., Yin, Y.H.: Dynamic behaviors of the lump solutions and mixed solutions to a (2+ 1)-dimensional nonlinear model....
    • 14. Han, P.F., Zhang, Y.: Linear superposition formula of solutions for the extended (3+ 1)-dimensional shallow water wave equation. Nonlinear...
    • 15. Ye, R., Zhang, Y.: A binary Darboux transformation for multi-component nonlinear Schrödinger equations and dark vector soliton solutions....
    • 16. Han, P.F., Zhang, Y., Jin, C.H.: Novel evolutionary behaviors of localized wave solutions and bilinear auto-Bäcklund transformations for...
    • 17. Iqbal, M.A., Miah, M.M., Rasid, M.M., Alshehri, H.M., Osman, M.S.: An investigation of two integrodifferential KP hierarchy equations...
    • 18. Gupta, R.K., Sharma, M.: Bifurcation analysis, chaotic analysis and diverse optical soliton solutions of time-fractional (2+ 1) dimensional...
    • 19. Sharma, M., Gupta, R.K.: Exact solutions of Benjamin–Bona–Mahoney–Burgers equation with dual power-law nonlinearity by modified exp-function...
    • 20. Alqurashi, N.T., Manzoor, M., Majid, S.Z., Asjad, M.I., Osman, M.S.: Solitary waves pattern appear in tropical tropospheres and mid-latitudes...
    • 21. Fahim, M.R.A., Kundu, P.R., Islam, M.E., Akbar, M.A., Osman, M.S.: Wave profile analysis of a couple of (3+ 1)-dimensional nonlinear...
    • 22. Rasid, M.M., Miah, M.M., Ganie, A.H., Alshehri, H.M., Osman, M.S., Ma, W.X.: Further advanced investigation of the complex Hirota-dynamical...
    • 23. Ren, B.: Interaction solutions for supersymmetric mKdV-B equation. Chin. J. Phys. 54(4), 628–634 (2016)
    • 24. Clarkson, P.A., Kruskal, M.D.: New similarity reductions of the Boussinesq equation. J. Math. Phys. 30, 2201 (1989)
    • 25. Kumar, V., Alqahtani, A.: Lie symmetry analysis, soliton and numerical solutions of boundary value problem for variable coefficients coupled...
    • 26. Ma, H., Deng, A., Wang, Y.: Exact solution of a KdV equation with variable coefficients. Comput. Math. Appl. 61(8), 2278 (2011)
    • 27. Lou, S.Y., Ma, H.C.: Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method. J. Phys....
    • 28. Kumari, P., Gupta, R.K., Kumar, S.: Non-auto-Bäcklund transformation and novel abundant explicit exact solutions of the variable coefficients...
    • 29. Shou-Feng, S.: Clarkson–Kruskal direct similarity approach for differential-difference equations. Commun. Theor. Phys. 44, 964 (2005)
    • 30. Ablowitz, M.J., Ramani, A., Segur, H.: Nonlinear evolution equations and ordinary differential equations of Painleve´ type. Lett. Nuovo...
    • 31. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24(3), 522–526 (1983)
    • 32. Kruskal, M.D., Clarkson, P.A.: The Painlevé–Kowalevski and Poly–Painlevé tests for integrability. Stud. Appl. Math. 86(2), 87–165 (1992)
    • 33. Sharma, M., Gupta, R.K.: On nonclassical symmetries, Painlevé analysis and singular, periodic and solitary wave solutions of generalized...
    • 34. Ren, B.: Painlevé analysis, nonlocal symmetry and explicit interaction solutions for supersymmetric mKdVB equation. AIP Adv. 6(8), 085205...
    • 35. Chen, Y., Lü, X., Wang, X.L.: Bäcklund transformation, Wronskian solutions and interaction solutions to the (3+ 1)-dimensional generalized...
    • 36. Yin, Y.H., Lü, X.: Dynamic analysis on optical pulses via modified PINNs: soliton solutions, rogue waves and parameter discovery of the...
    • 37. Yin, Y.H., Lü, X., Ma, W.X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+ 1)-dimensional nonlinear...
    • 38. Liu, B., Zhang, X.E., Wang, B., Lü, X.: Rogue waves based on the coupled nonlinear Schrödinger option pricing model with external potential....
    • 39. Yin, M.Z., Zhu, Q.W., Lü, X.: Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model....
    • 40. Lü, X., Hui, H.W., Liu, F.F., Bai, Y.L.: Stability and optimal control strategies for a novel epidemic model of COVID-19. Nonlinear Dyn....
    • 41. Lü, X., Chen, S.J.: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe...
    • 42. Zhao, Y.W., Xia, J.W., Lü, X.: The variable separation solution, fractal and chaos in an extended coupled (2+ 1)-dimensional Burgers...
    • 43. Baskonus, H.M., Osman, M.S., Rehman, H.U., Ramzan, M., Tahir, M., Ashraf, S.: On pulse propagation of soliton wave solutions related to...
    • 44. Adel, M., Aldwoah, K., Alahmadi, F., Osman, M.S.: The asymptotic behavior for a binary alloy in energy and material science: the unified...
    • 45. Kumar, S., Niwas, M., Osman, M.S., Abdou, M.A.: Abundant different types of exact soliton solution to the (4+ 1)-dimensional Fokas...
    • 46. Rahman, R.U., Qousini, M.M.M., Alshehri, A., Eldin, S.M., El-Rashidy, K., Osman, M.S.: Evaluation of the performance of fractional evolution...
    • 47. Chowdhury, M.A., Miah, M.M., Iqbal, M.A., Alshehri, H.M., Baleanu, D., Osman, M.S.: Advanced exact solutions to the nano-ionic currents...
    • 48. Qureshi, S., Akanbi, M.A., Shaikh, A.A., Wusu, A.S., Ogunlaran, O.M., Mahmoud, W., Osman, M.S.: A new adaptive nonlinear numerical method...
    • 49. Ismael, H.F., Sulaiman, T.A., Nabi, H.R., Mahmoud, W., Osman, M.S.: Geometrical patterns of time variable Kadomtsev–Petviashvili (I) equation...
    • 50. Tripathy, A., Sahoo, S., Rezazadeh, H., Izgi, Z.P., Osman, M.S.: Dynamics of damped and undamped wave natures in ferromagnetic materials....
    • 51. Rehman, H.U., Akber, R., Wazwaz, A.M., Alshehri, H.M., Osman, M.S.: Analysis of Brownian motion in stochastic Schrödinger wave equation...
    • 52. Akinyemi, L., Houwe, A., Abbagari, S., Wazwaz, A.M., Alshehri, H.M., Osman, M.S.: Effects of the higher-order dispersion on solitary waves...
    • 53. Yang, S., Hua, C.: Lie symmetry reductions and exact solutions of a coupled KdV-Burgers equation. Appl. Math. Comput. 234, 579–583 (2014)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno