Ir al contenido

Documat


Painlevé Analysis, Bilinear Forms, Bäcklund Transformations and Solitons for a Variable-Coefficient Extended Korteweg-de Vries Equation with an External-Force Term in Fluid Mechanics and Plasma Dynamics

  • Hao-Dong Liu [1] ; Bo Tian [1] ; Chong-Dong Cheng [1] ; Tian-Yu Zhou [1] ; Xiao-Tian Gao [1]
    1. [1] Beijing University of Posts and Telecommunications

      Beijing University of Posts and Telecommunications

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01081-1
  • Enlaces
  • Resumen
    • In this paper, we investigate a variable-coefficient extended Korteweg-de Vries equationwith an external-force term in fluidmechanics and plasma dynamics. Under certain variable-coefficient constraints, we get the Painlevé integrable property of that equation.

      With the truncated Painlevé expansion and Hirota method, we work out some bilinear forms, bilinear Bäcklund transformations under certain variable-coefficient constraints. With the bilinear forms, multi-soliton solutions are constructed. Based on those solutions, multi-complex-soliton solutions are derived through the complex forms of the Hirota method. Influences of the variable coefficients on the multi-soliton solutions are discussed graphically. We find that (i) different types of the one-soliton profiles and soliton interactions can be seen with the changes of variable coefficients;

      (ii) the amplitudes of those solitons are influenced under the dissipative and cubicnonlinear coefficients; (iii) the characteristic lines and velocities of those solitons are influenced under the dissipative, dispersive coefficients and external-force term; (iv) the backgrounds of those solitons are influenced under the external-force term. Additionally, the influences of the variable coefficients on the complex solitons are similar to the influences on the real solitons.

  • Referencias bibliográficas
    • 1. Chadha, N.M., Tomar, S., Raut, S.: Parametric analysis of dust ion acousticwaves in superthermal plasmas through non-autonomous KdV framework....
    • 2. Beyoud, S.: Torrential forced KdV equation: soliton solutions over a hole. Anal. Math. Phys. 13, 36 (2023)
    • 3. Chen, M.: Global Approximate Controllability of the Korteweg-de Vries Equation by a Finite- Dimensional Force. Appl. Math. Opt. 87, 12...
    • 4. Grimshaw, R., Malewoong, M.: Transcritical flowover two obstacles: forcedKorteweg-deVries framework. J. Fluid Mech. 809, 918 (2016)
    • 5. Grimshaw, R., Malewoong, M.: Transcritical flow over obstacles and holes: forced Korteweg-de Vries framework. J. Fluid Mech. 881, 660 (2019)
    • 6. Ermakov, A., Stepanyants, Y.: Soliton interaction with external forcing within the Korteweg-de Vries equation. Chaos 29, 013117 (2019)
    • 7. Lee, S.: Dynamics of trapped solitons for the forced KdV equation. Symmetry 10, 129 (2018)
    • 8. Kim, H., Choi, H.: A study of wave trapping between two obstacles in the forced Korteweg-de Vries equation. J. Eng. Math. 108, 197 (2018)
    • 9. Flamarion, M.,Ribeiro, R.: Solitarywaterwave interactions for the ForcedKorteweg-deVries equation. Comput. Appl. Math. 40, 312 (2021)
    • 10. Baines, P.: Topographic effects in stratified flows. Cambridge University Press (1995)
    • 11. Grimshaw, R., Chan, K.H., Chow, K.W.: Transcritical flow of a stratified fluid: The forced extended Korteweg-de Vries model. Phys. Fluids...
    • 12. Flamarion, M., Pelinovsky, E.: Soliton interactions with an external forcing: ThemodifiedKorteweg-de Vries framework. Chaos 165, 112889...
    • 13. Li,M., Xiao, J.H.,Wang, M.,Wang, Y.F., Tian, B.: Solitons for a Forced Extended Korteweg-de Vries Equation with Variable Coefficients...
    • 14. Meng, G.Q., Gao,Y.T.,Yu, X., Shen,Y.J., Qin,Y.: Painlevé analysis, Lax pair,Bäcklund transformation and multi-soliton solutions for a...
    • 15. Zhou, R.G., Ma,W.X.: Algebro-geometric solutions of the (2+1)-dimensional gardner equation. Nuovo Cimento B 115, 1419 (2000)
    • 16. Raut, S., Ma, W.X., Braman, R., Roy, S.: A non-autonomous Gardner equation and its integrability: solitons, positons and breathers. Chaos...
    • 17. Ma, W.X., Bullough, R.K., Caudrey, P.J., Fushchych, W.I.: Time-dependent symmetries of variablecoefficient evolution equations and graded...
    • 18. Jin, J., Zhang, Y.: Soliton and breather solutions for the seventh-order variable-coefficient nonlinear Schrödinger equation. Opt. Quant....
    • 19. Wazwaz, A.: Two new integrable modified KdV equations, of third-and fifth-order, with variable coefficients: multiple real and mulitple...
    • 20. Gao, X.Y.: Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation....
    • 21. Johnpillai, A., Khalique, C.: Lie group classification and invariant solutions of mKdV equation with time-dependent coefficients. Commun....
    • 22. Chen, Y.Q., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Tian, H.Y., Wang, M.: Reduction and analytic solutions of a variable-coefficient Korteweg-de...
    • 23. Chen, Y.Q., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Tian, H.Y., Wang, M.: Ablowitz Kaup Newell Segur system, conservation laws and Bäcklund...
    • 24. Das, A., Mandal, U.K.: Integrability, bilinearization, solitons and exact three wave solutions for a forced Korteweg-de Vries equation....
    • 25. Wadati, M.: The modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 34, 1289 (1973)
    • 26. Li, X.Z., Wang, M.L.: A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms....
    • 27. Grimshaw, R., Pelinovsky, E., Talipova, T., Kurkin, A.: Simulation of the transformation of internal solitary waves on oceanic shelves....
    • 28. Wadati, M.: Wave Propation in Nolinear Lattice. I. J. Phys. Soc. Jpn. 38, 673 (1975)
    • 29. Mathanaranjan, T.: Exact and explicit traveling wave solutions to the generalized Gardner and BBMB equations with dual high-order nonlinear...
    • 30. Wei, G.M., Gao, Y.T., Hu,W., Zhang, C.Y.: Painlevé analysis, auto-Bäcklund transformation and new analytic solutions for a generalized...
    • 31. Gao, X.Y., Guo, Y.J., Shan, W.R., Zhou, T.Y., Wang, M., Yang, D.Y.: In the Atmosphere and Oceanic Fluids: Scaling Transformations, Bilinear...
    • 32. Abdikian, A., Ghanbari, B.: On a modified Korteweg-de Vries equation for electrostatic structures in relativisitic degenerate electron-positron...
    • 33. Chow, K.W., Grimshaw, R.H.J., Ding, E.: Interactions of breathers and solitons in the extended Korteweg-de Vries equation. Wave Motion...
    • 34. Mohan, B., Kumar, S., Kumar, R.: Higher-order rogue waves and dispersive solitons of a novel P-type (3+1)-D evolution equation in...
    • 35. Kudryashov, N.A., Safonova, D.V.: Painlevé analysis and traveling wave solutions of the fourth-order differential equation for pluse with...
    • 36. Singh, S., Ray, S.S.: Painlevé analysis, auto-Bäcklund transformation and new exact solutions of (2+1) and (3+1)-dimensional extended...
    • 37. Hereman,W., Göktas, Ü., Colagrosso,M.D., Miller, A.J.: Algorithmic integrability tests for nonlinear differential and lattice equations....
    • 38. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522 (1983)
    • 39. Hirota, R.: The Direct Method in Soliton Theory. Cambridge Univ, Cambridge (2004)
    • 40. Ma, W.X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264, 2633 (2018)
    • 41. Chai, J., Tian, B., Qu, Q.X., Zhen, H.L., Chai, H.P.: Solitonic properties for a forced generalized variable coefficient Korteweg de Vries...
    • 42. Zhang, Y.P., Wang, J.Y., Wei, G.M., Liu, R.P.: The Painlevé property, Bäcklund transformation, Lax pair and new analytic solutions of...
    • 43. Tian, B., Gao, Y.T.: Truncated Painlevé expansion and a wide-ranging type of generalized variable coefficient Kadomtsev-Petviashvili equation....
    • 44. Russo,M., Choudhury, S.R.: Analytic solutions of amicrostructure PDE and the KdV and Kadomtsev- Petviashvili equations by invariant Painlevé...
    • 45. Liu, H.D., Tian, B., Feng, S.P., Chen, Y.Q., Zhou, T.Y.:Integrability, bilinearization, Bäcklund transformations and solutions for a generalized...
    • 46. Li, L.Q., Gao, Y.T., Yu, X., Jia, T.T., Hu, L., Zhang, C.Y.: Bilinear forms, bilinear Bäcklund transformation, soliton and breather interactions...
    • 47. Zhou, T.Y., Tian, B., Shen, Y., Gao, X.T.: Bilinear form, bilinear auto-Bäcklund transformation, soliton and half-periodic kink solutions...
    • 48. Sun, Z.Y., Yu, X., Feng, Y.J.: Coexistence of Gaussian and non-Gaussian statistics in vector integrable turbulence. Phys. Rev. E 108,...
    • 49. Sun, Z.Y., Yu, X.: Nonlinear Schrodinger waves in a disordered potential: Branched flow, spectrum diffusion, and rogue waves. Chaos 32,...
    • 50. Gao, X.Y.: Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2+1)-dimensional...
    • 51. Gao, X.Y.: Two-layer-liquid and lattice considerations through a (3+1)-dimensional generalized Yu- Toda-Sasa-Fukuyama system. Appl....
    • 52. Zhang, Y., Li, J.B., Lü, Y.N.: The exact solution and integrable properties to the variable-coefficient modified Korteweg-de Vries equation....
    • 53. Sun, Z.Y.,Gao,Y.T., Liu,Y.,Yu, X.: Solitonmanagement for a variable-coefficientmodifiedKortewegde Vries equation. Phys. Rev. E 84, 026606...
    • 54. Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: Solitonic propagation and interaction for a generalized variablecoefficient forced Korteweg-de...
    • 55. Liu, Y.P., Gao, Y.T., Wei, G.M.: Intergrable aspects and soliton interaction for a generalized inhomogeneous Gardner model with external...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno