Ir al contenido

Documat


KoopaML: A Graphical Platform for Building Machine Learning Pipelines Adapted to Health Professionals

  • Francisco Jos García-Peñalvo [1] Árbol académico ; Andrea Vázquez-Ingelmo [1] ; Alicia García-Holgado [1] Árbol académico ; Jesús Sampedro-Gómez [1] ; Antonio Sánchez-Puente [1] ; Víctor Vicente-Palacios [2] ; P. Ignacio Dorado-Díaz [1] ; Pedro L. Sánchez [1]
    1. [1] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

    2. [2] Philips Healthcare
  • Localización: IJIMAI, ISSN-e 1989-1660, Vol. 8, Nº. 6, 2024, págs. 112-119
  • Idioma: inglés
  • DOI: 10.9781/ijimai.2023.01.006
  • Enlaces
  • Resumen
    • Machine Learning (ML) has extended its use in several domains to support complex analyses of data. The medical field, in which significant quantities of data are continuously generated, is one of the domains that can benefit from the application of ML pipelines to solve specific problems such as diagnosis, classification, disease detection, segmentation, assessment of organ functions, etc. However, while health professionals are experts in their domain, they can lack programming and theoretical skills regarding ML applications. Therefore, it is necessary to train health professionals in using these paradigms to get the most out of the application of ML algorithms to their data. In this work, we present a platform to assist non-expert users in defining ML pipelines in the health domain. The system’s design focuses on providing an educational experience to understand how ML algorithms work and how to interpret their outcomes and on fostering a flexible architecture to allow the evolution of the available components, algorithms, and heuristics.

  • Referencias bibliográficas
    • G. Litjens et al., “A survey on deep learning in medical image analysis,” (in eng), Med Image Anal, vol. 42, pp. 60-88, Dec 2017, doi: 10.1016/j.media.2017.07.005.
    • S. González Izard, R. Sánchez Torres, Ó. Alonso Plaza, J. A. Juanes Mndez, and F. J. García-Peñalvo, “Nextmed: Automatic Imaging Segmentation,...
    • S. G. Izard, J. A. Juanes, F. J. García Peñalvo, J. M. G. Estella, M. J. S. Ledesma, and P. Ruisoto, “Virtual Reality as an Educational and...
    • J. C. Weyerer and P. F. Langer, “Garbage in, garbage out: The vicious cycle of ai-based discrimination in the public sector,” in Proceedings of...
    • X. Ferrer, T. van Nuenen, J. M. Such, M. Cot, and N. Criado, “Bias and Discrimination in AI: a cross-disciplinary perspective,” IEEE Technology and...
    • S. Hoffman, “The Emerging Hazard of AI‐Related Health Care Discrimination,” Hastings Center Report, vol. 51, no. 1, pp. 8-9, 2021, doi: 10.1002/hast.1203.
    • S. Wachter, B. Mittelstadt, and C. Russell, “Why fairness cannot be automated: Bridging the gap between EU non-discrimination law and AI,”...
    • M. Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning,” in 12th USENIX Symposium on Operating Systems Design and Implementation...
    • R. Anil et al., “Apache Mahout: Machine Learning on Distributed Dataflow Systems,” Journal of Machine Learning Research, vol. 21, no. 127,...
    • E. Frank, M. Hall, G. Holmes, R. Kirkby, B. Pfahringer, and I. H. Witten, “Weka-A Machine Learning Workbench for Data Mining,” in Data Mining...
    • M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA data mining software: an update,” SIGKDD Explor. Newsl.,...
    • A. Vázquez-Ingelmo, F. J. García-Peñalvo, and R. Thern, “Information Dashboards and Tailoring Capabilities - A Systematic Literature Review,”...
    • A. Sarikaya, M. Correll, L. Bartram, M. Tory, and D. Fisher, “What Do We Talk About When We Talk About Dashboards?,” IEEE Transactions on Visualization...
    • S. Few, Information dashboard design. Sebastopol‎, CA, USA: O’Reilly Media, 2006.
    • S. Land and S. Fischer, “Rapid miner 5,” Rapid-I GmbH, 2012.
    • J. Bosch, “From software product lines to software ecosystems,” in SPLC, 2009, vol. 9, pp. 111-119.
    • L. Chen, M. Ali Babar, and N. Ali, “Variability management in software product lines: a systematic review,” 2009.
    • P. Clements and L. Northrop, Software product lines. Addison-Wesley Boston, 2002.
    • C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software product lines,” in 2008 ACM/IEEE 30th International Conference on Software Engineering,...
    • J. Van Gurp, J. Bosch, and M. Svahnberg, “On the notion of variability in software product lines,” in Proceedings Working IEEE/IFIP Conference...
    • S. Lampa, J. Alvarsson, and O. Spjuth, “Towards agile large-scale predictive modelling in drug discovery with flow-based programming design...
    • S. Lampa, M. Dahlö, J. Alvarsson, and O. Spjuth, “SciPipe: A workflow library for agile development of complex and dynamic bioinformatics pipelines,”...
    • R. Skjong and B. H. Wentworth, “Expert judgment and risk perception,” in Proceedings of the Eleventh (2001) International Offshore and Polar...
    • S. Brown. “The C4 Model for Software Architecture.” https://c4model.com/ (accessed 16-05-2022).
    • A. García-Holgado et al., “User-Centered Design Approach for a Machine Learning Platform for Medical Purpose,” Cham, 2021: Springer International...
    • A. Vázquez Ingelmo, A. García-Holgado, F. J. García-Peñalvo, and R. Thern Sánchez, “A Meta-modeling Approach to Take into Account Data Domain...
    • A. Vázquez-Ingelmo, A. García-Holgado, F. J. García-Peñalvo, and R. Thern, “Proof-of-concept of an information visualization classification approach...
    • A. Vázquez-Ingelmo, F. J. García-Peñalvo, and R. Thern, “Taking advantage of the software product line paradigm to generate customized user...
    • C. Schaffer, “Selecting a classification method by cross-validation,” Machine Learning, vol. 13, no. 1, pp. 135-143, 1993.
    • F. García-Peñalvo et al., “Application of Artificial Intelligence Algorithms Within the Medical Context for Non-Specialized Users: the CARTIER-IA Platform,”...
    • A. García-Holgado and F. J. García-Peñalvo, “Validation of the learning ecosystem metamodel using transformation rules,” Future Generation Computer...
    • A. Martínez-Rojas, A. Jimnez-Ramírez, and J. Enríquez, “Towards a Unified Model Representation of Machine Learning Knowledge,” presented at...
    • C. Kumar, M. Käppel, N. Schützenmeier, P. Eisenhuth, and S. Jablonski, “A Comparative Study for the Selection of Machine Learning Algorithms based...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno