Ir al contenido

Documat


Approximate Controllability of Fractional Evolution System on Non-Dense Domain

  • Vikram Singh [1] ; Renu Chaudhary [2] ; Umesh Kumar [1] ; Sandeep Kumar [1]
    1. [1] University of Delhi

      University of Delhi

      India

    2. [2] Technion–Israel Institute of Technology, Technical University of Applied Sciences Würzburg-Schweinfur
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01135-4
  • Enlaces
  • Resumen
    • This article explores the existence and approximate controllability of integral solutions for Hilfer fractional evolution equations in a non-dense domain. Leveraging the wellknown generalized Banach contraction theorem, we establish both the existence and uniqueness of the integral solution. Furthermore, we adopt a sequential approach to derive results related to approximate controllability, without relying on the compactness of semigroups or the uniform boundedness of nonlinear functions. To validate our findings, we present and discuss an illustrative example.

  • Referencias bibliográficas
    • 1. Barenblatt, G.I., Zheltov, I.P., Kochina, I.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]....
    • 2. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific Publishing Co. Inc, River Edge (2000)
    • 3. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
    • 4. Begum, R., Tunç, O., Khan, H., Gulzar, H., Khan, A.: A fractional order zika virus model with mittag-leffler kernel. Chaos Solitons Frac....
    • 5. Shah, K., Ullah, A., Nieto, J.J.: Study of fractional order impulsive evolution problem under nonlocal cauchy conditions. Math. Methods...
    • 6. Shah, M.S. Kamal., Abdeljawad, T.: Study of evolution problem under mittag-leffler type fractional order derivative. Alexandria Eng. J....
    • 7. Ahmad, I., Ahmad, N., Shah, K., Abdeljawad, T.: Some appropriate results for the existence theory and numerical solutions of fractals-fractional...
    • 8. Abdulwasaa, M.A., Kawale, S.V., Abdo, M.S., Albalwi, M.D., Shah, K., Abdalla, B., Abdeljawad, T.: Statistical and computational analysis...
    • 9. Shah, K., Khan, A., Abdalla, B., Abdeljawad, T., Khan, K.A.: A mathematical model for nipah virus disease by using piecewise fractional...
    • 10. Chaudhary, R., Reich, S.: Existence and controllability results for Hilfer fractional evolution equations via integral contractors. Frac....
    • 11. Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with hilfer fractional derivative. Appl. Math. Comput. 257,...
    • 12. Vijayakumar, V., Udhayakumar, R.: A new exploration on existence of sobolev-type hilfer fractional neutral integro-differential equations...
    • 13. Kavitha, K., Nisar, K.S., Shukla, A., Vijayakumar, V., Rezapour, S.: A discussion concerning the existence results for the sobolev-type...
    • 14. Bedi, P., Kumar, A., Abdeljawad, T., Khan, Z.A., Khan, A.: Existence and approximate controllability of hilfer fractional evolution equations...
    • 15. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S.: A discussion on the approximate controllability of hilfer fractional neutral...
    • 16. Barnett, S.: Introduction toMathematical Control Theory. Oxford AppliedMathematics and Computing Science Series. Clarendon Press, Oxford...
    • 17. Curtain, R.F., Zwart, H.: An Introduction to Infinite-dimensional Linear Systems Theory. Texts in Applied Mathematics, Springer, New York...
    • 18. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME Ser. D. J. Basic Engrg. 82(1), 35–45 (1960)
    • 19. Debbouche, A., Antonov, V.: Approximate controllability of semilinear hilfer fractional differential inclusions with impulsive control...
    • 20. Mahmudov, N.I., Zorlu, S.: On the approximate controllability of fractional evolution equations with compact analytic semigroup. J. Comput....
    • 21. Naito, K.: Controllability of semilinear control systems dominated by the linear part. SIAM J. Control Opt. 25(3), 715–722 (1987)
    • 22. Fu, X.: Controllability of non-densely defined functional differential systems in abstract space. Appl. Math. Lett. 19(4), 369–377 (2006)
    • 23. Zhang, Z., Liu, B.: Controllability results for fractional functional differential equations with nondense domain. Num. Funct. Anal. Opt....
    • 24. Dineshkumar, C., Sooppy Nisar, K., Udhayakumar, R., Vijayakumar, V.: A discussion on approximate controllability of sobolev-type hilfer...
    • 25. Ma, Y.-K., Kavitha, K., Albalawi, W., Shukla, A., Nisar, K.S., Vijayakumar, V.: An analysis on the approximate controllability of hilfer...
    • 26. Bose, C.V., Udhayakumar, R.: Analysis on the controllability of hilfer fractional neutral differential equations with almost sectorial...
    • 27. Chaudhary, R.: Partial approximate controllability results for fractional order stochastic evolution equations using approximation method....
    • 28. Chaudhary, R., Reich, S.: On the solvability of the Atangana-Baleanu fractional evolution equations: an integral contractor approach....
    • 29. Da Prato, G., Sinestrari, E.: Differential operators with non dense domain. Annali della scuola normale superiore di pisa-classe di scienze...
    • 30. Kellerman, H., Hieber, M.: Integrated semigroups. J. Funct. Anal. 84(1), 160–180 (1989)
    • 31. Neubrander, F.: Integrated semigroups and their applications to the abstract cauchy problem. Pac. J. Math. 135(1), 111–155 (1988)
    • 32. Nisar, K.S., Vijayakumar, V.: Results concerning to approximate controllability of non-densely defined sobolev-type hilfer fractional...
    • 33. Kavitha, V., Arjunan, M.M.: Controllability of non-densely defined impulsive neutral functional differential systems with infinite delay...
    • 34. Mophou, G., Néguérékata, G.: On integral solutions of some nonlocal fractional differential equations with nondense domain. Nonlinear...
    • 35. Vijayakumar, V., Udhayakumar, R.: Results on approximate controllability for non-densely defined hilfer fractional differential system...
    • 36. Dineshkumar, C., Udhayakumar, R.: Results on approximate controllability of nondensely defined fractional neutral stochastic differential...
    • 37. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
    • 38. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, Springer,...
    • 39. Furati, K.M., Kassim, M.D.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64(6),...
    • 40. Singh, V.: Controllability of hilfer fractional differential systems with non-dense domain. Num. Funct. Anal. Opt. 40(13), 1572–1592 (2019)
    • 41. Bryant, V.: A remark on a fixed-point theorem for iterated mappings. Am. Math. Monthly 75(4), 399–400 (1968)
    • 42. Ye, H., Gao, J., Ding, Y.: A generalized gronwall inequality and its application to a fractional differential equation. J. Math. Anal....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno