Ir al contenido

Documat


An Analysis Regarding to Approximate Controllability for Hilfer Fractional Neutral Evolution Hemivariational Inequality

  • K. Kavitha [1] ; V. Vijayakumar [1]
    1. [1] Vellore Institute of Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The main motivation of our conversation is the approximate controllability of Hilfer fractional neutral evolution hemivariational inequalities. Using fractional calculus, the theory of operators semigroup and the probability density function, we first construct a new C1−β mild solution for Hilfer fractional differential inclusion. Secondly, we prove the approximate controllability of Hilfer fractional evolution hemivariational inequalities to linear and semilinear systems using characteristic solution operators and fundamental features via a fixed point theorem for multi-valued mappings. Finally, two examples are provided to demonstrate our theory.

  • Referencias bibliográficas
    • 1. Ahmed, H.M., El Borai, M.M., Okb El Bab, A.S., Ramadan, M.E.: Controllability and constrained controllability for nonlocal Hilfer fractional...
    • 2. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity...
    • 3. Baleanu, D., Saadati, R., Sousa, J.: The stability of the fractional Volterra integro-differential equation by means of -Hilfer operator...
    • 4. Bohnenblust, H.F., Karlin, S.: On a theorem of Ville. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, pp. 155–160....
    • 5. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Wiley, New York (1983)
    • 6. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S., Shukla, A.: A note on the approximate controllability of Sobolev type fractional...
    • 7. Dineshkumar, C., Nisar, K.S., Udhayakumar, R., Vijayakumar, V.: A discussion on approximate controllability of Sobolev-type Hilfer neutral...
    • 8. Deimling, K.: Multivalued Differential Equations. De Gruyter, Berlin (1992)
    • 9. Fattorini, H.O.: Second Order Linear Differential Equations in Banach Spaces. Elsevier, Amsterdam (2000)
    • 10. Gu, H.B., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257,...
    • 11. Haq, A., Sukavanam, N.: Existence and approximate controllability of Riemann–Liouville fractional integrodifferential systems with damping....
    • 12. Haq, A.: Partial-approximate controllability of semi-linear systems involving two Riemann–Liouville fractional derivatives. Chaos Solitons...
    • 13. Harrat, A., Nieto, J.J., Debbouche, A.: Solvability and optimal controls of impulsive Hilfer fractional delay evolution inclusions with...
    • 14. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)
    • 15. Hu, S., Papageorgiou, N.S.: Hand Book of Multivalued Analysis (Theory). Kluwer Academic Publishers, Dordrecht (1997)
    • 16. Jajarmi, A., Baleanu, D.: On the fractional optimal control problems with a general derivative operator. Asian J. Control 23(2), 1062–1071...
    • 17. Jyoti, D., Kumar, S.: Modified Vakhnenko–Parkes equation with power law nonlinearity: Painleve analysis, analytic solutions and conservation...
    • 18. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Ravichandran, C.: Results on controllability of Hilfer fractional differential equations...
    • 19. Kavitha, K., Vijayakumar, V., Shukla, A., Nisar, K.S., Udhayakumar, R.: Results on approximate controllability of Sobolev-type fractional...
    • 20. Kavitha, K., Vijayakumar, V.: A discussion concerning to partial-approximate controllability of Hilfer fractional system with nonlocal...
    • 21. Kilbas, A.A., Srinivas, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier Science B.V, Amsterdam...
    • 22. Kumar, S., Biswas, A., Zhou, Q., Yildirim, Y., Alshehri, H.M., Belic, M.R.: Straddled optical solitons for cubic-quartic Lakshmanan–Porsezian–Daniel...
    • 23. Kumar, S., Malik, S.: Cubic-quartic optical solitons with Kudryashov’s law of refractive index by Lie symmetry analysis. Optik 242, 167308...
    • 24. Kumar, S., Sukavanam, N.: Approximate controllability of fractional order semilinear systems with bounded delay. J. Differ. Equ. 252,...
    • 25. Lasota, A., Opial, Z.: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued...
    • 26. Liu, Z.H., Li, X.W.: Approximate controllability for a class of hemivariational inequalities. Nonlinear Anal. RWA 22, 581–591 (2015)
    • 27. Li, L., Liu, Z., Bin, M.: Approximate controllability for stochastic evolution inclusions of Clarke’s subdifferential type. Appl. Math....
    • 28. Liu, Z., Li, X., Motreanu, D.: Approximate controllability for nonlinear evolution hemivariational inequalities in Hilbert spaces. SIAM...
    • 29. Mahmudov, N.I., Udhayakumar, R., Vijayakumar, V.: On the approximate controllability of secondorder evolution hemivariational inequalities....
    • 30. Malik, S., Kumar, S., Das, A.: A (2 + 1)-dimensional combined KdV–mKdV equation: integrability, stability analysis and soliton solutions....
    • 31. Malik, S., Kumar, S., Kumari, P., Nisar, K.S.: Some analytic and series solutions of integrable generalized Broer–Kaup system. Alex. Eng....
    • 32. Migórski, S.: On existence of solutions for parabolic hemivariational inequalities. J. Comput. Appl. Math. 129, 77–87 (2001)
    • 33. Migórski, S., Ochal, A.: Quasi-static hemivariational inequalities via vanishing acceleration approach. SIAM J. Math. Anal. 41, 1415–1435...
    • 34. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities, Advances in Mechanics and Mathematics, vol....
    • 35. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)
    • 36. Mohan Raja, M., Vijayakumar, V., Udhayakumar, R.: A new approach on approximate controllability of fractional evolution inclusions of...
    • 37. Mohan Raja, M., Vijayakumar, V., Huynh, L.N., Udhayakumar, R., Nisar, K.S.: Results on the approximate controllability of fractional hemivariational...
    • 38. Nisar, K.S., Vijayakumar, V.: Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional...
    • 39. Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993)
    • 40. Pazy, A.: Semilgroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)
    • 41. Podlubny, I.: Fractional Differential Equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, to method...
    • 42. Rahman, G., Nisar, K.S., Khan, S., Baleanu, D., Vijayakumar, V.: On the weighted fractional integral inequalities for Chebyshev functionals....
    • 43. Santamaria, V.H., Balc’h, K.L., Peralta, L.: Statistical null-controllability of stochastic nonlinear parabolic equations. Stoch. Partial...
    • 44. Santamaria, V.H., Peralta, L.: Controllability results for stochastic coupled systems of fourth- and second-order parabolic equations....
    • 45. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional control systems of order α ∈ (1, 2). In:...
    • 46. Shukla, A., Sukavanam, N.: Complete controllability of semi-linear stochastic system with delay. Rendiconti del Circolo Matematico di...
    • 47. Shukla, A., Sukavanam, N., Pandey, D.N.: Controllability of semilinear stochastic system with multiple delays in control. IFAC Proc. Vol....
    • 48. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional stochastic control system. Asian Eur. J....
    • 49. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear stochastic system of order α ∈ (1, 2]. J....
    • 50. Singh, J., Kumar, D., Baleanu, D.: New aspects of fractional Bloch model associated with composite fractional derivative. Math. Model....
    • 51. Vijayakumar, V.: Approximate controllability for a class of second order stochastic evolution inclusions of Clarke’s subdifferential type....
    • 52. Vijayakumar, V., Ravichandran, C., Nisar, K.S., Kucche, K.D.: New discussion on approximate controllability results for fractional Sobolev...
    • 53. Vijayakumar, V., Panda, S.K., Nisar, K.S., Baskonus, H.M.: Results on approximate controllability results for second-order Sobolev-type...
    • 54. Vijayakumar, V., Murugesu, R.: Controllability for a class of second-order evolution differential inclusions without compactness. Appl....
    • 55. Vijayakumar, V., Udhayakumar, R., Dineshkumar, C.: Approximate controllability of second order nonlocal neutral differential evolution...
    • 56. Vijayakumar, V., Murugesu, R., Tamil Selvan, M.: Controllability for a class of second order functional evolution differential equations...
    • 57. Williams, W.K., Vijayakumar, V., Udhayakumar, R., Panda, S.K., Nisar, K.S.: Existence and controllability of nonlocal mixed Volterra–Fredholm...
    • 58. Ye, H.P., Gao, J.M., Ding, Y.S.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math....
    • 59. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno