Ir al contenido

Documat


Analysis on the Controllability of Hilfer Fractional Neutral Differential Equations with Almost Sectorial Operators and Infinite Delay via Measure of Noncompactness

  • C. S. Varun Bose [1] ; R. Udhayakumar [1]
    1. [1] Vellore Institute of Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we formulate the new set of sufficient conditions for the controllability of Hilfer fractional neutral differential systems with almost sectorial operator and infinite delay. Firstly, we show the controllability of the system using the MNC and the Mo¨nch’s fixed point theorem. Finally, we extend the results to the controllability of the system with nonlocal conditions, and some applications are provided to demonstrate how the major results might be applied.

  • Referencias bibliográficas
    • 1. Agarwal, R.P., Lakshmikanthan, V., Nieto, J.J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear...
    • 2. Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-Type Fractional Differential Equations. Springer International Publishing...
    • 3. Balachandran, K., Sakthivel, R.: Controllability of integro-differential systems in Banach spaces. Appl. Math. Comput. 118, 63–71 (2001)
    • 4. Banas, J., Goebel, K.: Measure of noncompactness in Banach spaces. In: Lecture Notes in Pure and Applied Mathematics, Dekker, New York...
    • 5. Bedi, P., Kumar, A., Abdeljawad, T., Khan, Z.A., Khan, A.: Existence and approximate controllability of Hilfer fractional evolution equations...
    • 6. Byszewski, L.: Theorems about existence and uniqueness of a solutions of semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl....
    • 7. Byszewski, L., Akca, H.: On a mild solution of semilinear functional differential evolution nonlocal problem. J. Math. Stoch. Anal. 10(3),...
    • 8. Chang, Y.K.: Controllability of impulsive differential systems with infinite delay in Banach spaces. Chaos Solit. Fractals 33, 1601–1609...
    • 9. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Shukla, A., Nisar, K.S.: A note on approximate controllability for nonlocal fractional...
    • 10. Dineshkumar, C., Udhayakumar, R.: New results concerning to approximate controllability of Hilfer fractional neutral stochastic delay...
    • 11. Furati, K.M., Kassim, M.D., Tatar, N.E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math....
    • 12. Gu, H., Trujillo, J.J.: Existence of integral solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257,...
    • 13. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)
    • 14. Jaiswal, A., Bahuguna, D.: Hilfer fractional differential equations with almost sectorial operators. Differ. Equ. Dyn. Syst., pp. 1–17...
    • 15. Ji, S., Li, G., Wang, M.: Controllability of impulsive differential systems with nonlocal conditions. Appl. Math. Comput. 217, 6981–6989...
    • 16. Karthikeyan, K., Debbouche, A., Torres, D.F.M.: Analysis of Hilfer fractional integro-differential equations with almost sectorial operators....
    • 17. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Sakthivel, N., Nissar, K.S.: A note on approximate controllability of the Hilfer fractional...
    • 18. Kavitha, K., Vijayakumar, V., Udhayakumar, R.: Results on controllability on Hilfer fractional neutral differential equations with infinite...
    • 19. Khaminsou, B., Thaiprayoon, C., Sudsutad, W., Jose, S.A.: Qualitative analysis of a proportional Caputo fractional Pantograph differential...
    • 20. Lakshmikantham, V., Vatsala, A.S.: Basic theory of fractional differential equations. Nonlinear Anal.: Theory Methods Appl. 69(8), 2677–2682...
    • 21. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)
    • 22. Monch ¨ , H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal.:...
    • 23. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer,...
    • 24. Periago, F., Straub, B.: A functional calculus for almost sectorial operators and applications to abstract evolution equations. J. Evol....
    • 25. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
    • 26. Sakthivel, R., Ganesh, R., Anthoni, S.M.: Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. Comput....
    • 27. Singh, V.: Controllability of Hilfer fractional differential systems with non-dense domain. Numer. Funct. Anal. Optim. 40(13), 1572–1592...
    • 28. Sivasankar, S., Udhayakumar, R.: Hilfer fractional neutral stochastic Volterra integro-differential inclusions via almost sectorial operators....
    • 29. Varun Bose, C.S., Udhayakumar, R.: A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators....
    • 30. Varun Bose, C. B. S., Udhayakumar, R.: Existence of mild solutions for Hilfer fractional neutral integro-differential inclusions via almost...
    • 31. Vijayakumar, V., Ravichandran, C., Nisar, K.S., Kucche, K.D.: New discussion on approximate controllability results for fractional Sobolev...
    • 32. Wang, J.R., Fan, Z., Zhou, Y.: Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces. J....
    • 33. Yang, M., Wang, Q.: Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract....
    • 34. Yang, M., Wang, Q.: Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions. Math. Methods Appl....
    • 35. Zhang, L., Zhou, Y.: Fractional Cauchy problems with almost sectorial operators. Appl. Math. Comput. 257, 145–157 (2014)
    • 36. Zhou, M., Li, C., Zhou, Y.: Existence of mild solutions for Hilfer fractional evolution equations with almost sectorial operators. Axioms...
    • 37. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
    • 38. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Elsevier, New York (2015)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno