Ir al contenido

Documat


Discussion on the Approximate Controllability of Nonlocal Fractional Derivative by Mittag-Leffler Kernel to Stochastic Differential Systems

  • C. Dineshkumar [2] ; R. Udhayakumar [2] ; V. Vijayakumar [2] ; Anurag Shukla [3] ; Kottakkaran Sooppy Nisar [1]
    1. [1] Prince Sattam Bin Abdulaziz University

      Prince Sattam Bin Abdulaziz University

      Arabia Saudí

    2. [2] Vellore Institute of Technology
    3. [3] Rajkiya Engineering College Kannauj
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This article is primarily targeting the approximate controllability of nonlocal Atangana–Baleanu fractional derivative by Mittag-Leffler kernel to stochastic differential systems. In particular, we obtain a new set of sufficient conditions for the approximate controllability of nonlinear Atangana–Baleanu fractional stochastic differential inclusions under the assumption that the corresponding linear system is approximately controllable. In addition, we establish the approximate controllability results for the Atangana–Baleanu fractional stochastic control system with infinite delay. The results are obtained with the help of the fixed-point theorem for multivalued operators and fractional calculus. At last, an example is included to show the applicability of our results.

  • Referencias bibliográficas
    • 1. Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential...
    • 2. Aimene, D., Baleanu, D., Seba, D.: Controllability of semilinear impulsive Atangana–Baleanu fractional differential equations with delay....
    • 3. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481...
    • 4. Atangana, A., Balneau, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model....
    • 5. Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fractals...
    • 6. Bahaa, G., Hamiaz, A.: Optimality conditions for fractional differential inclusions with nonsingular Mittag Leffler kernel. Adv. Differ....
    • 7. Balasubramaniam, P.: Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations. Chaos Solitons...
    • 8. Bedi, P., Kumar, A., Khan, A.: Controllability of neutral impulsive fractional differential equations with Atangana–Baleanu–Caputo derivatives....
    • 9. Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal....
    • 10. Byszewski, L., Akca, H.: On a mild solution of a semilinear functional-differential evolution nonlocal problem. J. Appl. Math. Stoch....
    • 11. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)
    • 12. Chang, Y.K.: Controllability of impulsive functional differential systems with infinite delay in Banach spaces. Chaos Solitons Fractals...
    • 13. Dhage, B.C.: Multi-valued mappings and fixed points II, Tamkang. J. Math. 37, 27–46 (2006)
    • 14. Deimling, K.: Multivalued Differential Equations. De Gruyter, Berlin (1992)
    • 15. Dineshkumar, C., Nisar, K.S., Udhayakumar, R., Vijayakumar, V.: A discussion on approximate controllability of Sobolev-type Hilfer neutral...
    • 16. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Shukla, A., Nisar, K.S.: New discussion regarding approximate controllability for Sobolev-type...
    • 17. Dineshkumar, C., Udhayakumar, R.: Results on approximate controllability of fractional stochastic Sobolev-type Volterra-Fredholm integro-differential...
    • 18. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S., Shukla, A., Abdel-Aty, A.H., Mahmoud, M., Mahmoud, E.E.: A note on existence...
    • 19. Dineshkumar, C., Vijayakumar, V., Udhayakumar, R., Shukla, A., Nisar, K.S.: Controllability discussion for fractional stochastic Volterra-Fredholm...
    • 20. N’Guerekata, G.M.: A Cauchy problem for some fractional abstract differential equation with nonlocal conditions. Nonlinear Anal. TMA 70(5),...
    • 21. Jarad, F., Abdeljawad, T., Hammouch, Z.: On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative....
    • 22. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis (Theory). Kluwer Academic Publishers, Dordrecht Boston, London (1997)
    • 23. Hu, L., Ren, Y.: Existence results for impulsive neutral stochastic functional integro-differential equations with infinite delays. Acta...
    • 24. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, Amsterdam (2006)
    • 25. Khan, A., Khan, H., Gomez-Aguilar, J.F., Abdeljawad, T.: Existence and Hyers-Ulam stability for a nonlinear singular fractional differential...
    • 26. Khan, A., Gomez-Aguilar, J.F., Khan, T.S., Khan, H.: Stability analysis and numerical solutions of fractional order HIV/AIDS model. Chaos...
    • 27. Khan, H., Gomez-Aguilar, J.F., Alkhazzan, A., Khan, A.: A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler Law....
    • 28. Khan, H., Gomez-Aguilar, J.F., Abdeljawad, T., Khan, A.: Existence results and stability criteria for ABC-Fuzzy-Volterra integro-differential...
    • 29. Khan, H., Khan, A., Jarad, F., Shah, A.: Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system....
    • 30. Kumar, A., Pandey, D.N.: Existence of mild solution of Atangana–Baleanu fractional differential equations with non-instantaneous impulses...
    • 31. Lasota, A., Opial, Z.: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued...
    • 32. Logeswari, K., Ravichandran, C.: A new exploration on existence of fractional neutral integrodifferential equations in the concept of...
    • 33. Ma, Y.K., Dineshkumar, C., Vijayakumar, V., Udhayakumar, R., Shukla, A., Nisar, K.S.: Approximate controllability of Atangana-Baleanu...
    • 34. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7(9), 1461–1477 (1996)
    • 35. Mallika Arjunan, M., Hamiaz, A., Kavitha, V.: Existence results for Atangana–Baleanu fractional neutral integro-differential systems with...
    • 36. Mallika Arjunan, M., Abdeljawad, T., Kavitha, V., Yousef, A.: On a new class of Atangana–Baleanu fractional Volterra-Fredholm integro-differential...
    • 37. Mahmudov, N.I.: Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM J....
    • 38. Mahmudov, N.I., Denker, A.: On controllability of linear stochastic systems. Int. J. Control 73, 144–151 (2000)
    • 39. Mohan Raja, M., Vijayakumar, V., Shukla, A., Nisar, K.S., Baskonus, H.M.: On the approximate controllability results for fractional integrodifferential...
    • 40. Nisar, K.S., Kaliraj, K., Thilakraj, E., Ravichandran, C.: Controllability analysis for impulsive integrodifferential equation via Atangana–Baleanu...
    • 41. Omaba, M.E., Enyi, C.D.: Atangana–Baleanu time-fractional stochastic integro-differential equation. Part. Differ. Equ. Appl. Math. 4,...
    • 42. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer,...
    • 43. Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their...
    • 44. Ravichandran, C., Logeswari, K., Jarad, F.: New results on existence in the frame-work of Atangana– Baleanu derivative for fractional...
    • 45. Ren, Y., Hu, L., Sakthivel, R.: Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay....
    • 46. Sakthivel, R., Suganya, S., Anthoni, S.M.: Approximate controllability of fractional stochastic evolution equations. Comput. Math. Appl....
    • 47. Sakthivel, R., Ren, Y., Debbouche, A., Mahmudov, N.I.: Approximate controllability of fractional stochastic differential inclusions with...
    • 48. Shah, A., Khan, R.A., Khan, A., Khan, H., Gomez-Aguilar, J.F.: Investigation of a system of nonlinear fractional order hybrid differential...
    • 49. Shu, X.B., Lai, Y., Chen, Y.: The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear Anal....
    • 50. Shukla, A., Sukavanam, N., Pandey, D.N.: Controllability of semilinear stochastic control system with finite delay. IMA J. Math. Control....
    • 51. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear stochastic control system with nonlocal conditions....
    • 52. Shukla, A., Sukavanam, N., Pandey, D.N.: Complete controllability of semilinear stochastic systems with delay in both state and control....
    • 53. Singh, A., Shukla, A., Vijayakumar, V., Udhayakumar, R.: Asymptotic stability of fractional order (1, 2] stochastic delay differential...
    • 54. Sousa, J.V.C., Oliveira, E.C.: Leibniz type rule: -Hilfer fractional derivative, Classical Analysis and ODEs, 1-16 (2018) arXiv:1811.02717
    • 55. Vijayakumar, V.: Approximate controllability results for abstract neutral integro-differential inclusions with infinite delay in Hilbert...
    • 56. Vijayakumar, V., Udhayakumar, R., Dineshkumar, C.: Approximate controllability of second order nonlocal neutral differential evolution...
    • 57. Vijayakumar, V., Murugesu, R., Poongodi, R., Dhanalakshmi, S.: Controllability of second order impulsive nonlocal Cauchy problem via measure...
    • 58. Vijayakumar, V.: Approximate controllability for a class of second-order stochastic evolution inclusions of Clarke’s subdifferential type....
    • 59. Yan, B.: Boundary value problems on the half-line with impulses and infinite delay. J. Math. Anal. Appl. 259(1), 94–114 (2001)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno