Ir al contenido

Documat


Lie Symmetries and Exact Solutions of KdV–Burgers Equation with Dissipation in Dusty Plasma

  • Dig Vijay Tanwar [2] ; Abdul-Majid Wazwaz [1]
    1. [1] Saint Xavier University

      Saint Xavier University

      City of Chicago, Estados Unidos

    2. [2] Graphic Era Deemed to be University (Dehradu, India)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This article investigates nonlinear behavior of ion acoustic waves in a plasma with superthermal electrons and isothermal positrons. We consider the KdV–Burgers equation with dissipation in dusty plasmas and construct Lie symmetries, infinitesimal generators and commutative relations under invariance property of Lie groups of transformations. The adjoint relations and invariant functions lead to one dimensional optimal system. We derive similarity variables by using Lie group analysis, where the KdV–Burgers equation reduces in over determined equations, which provide exact solutions. The solutions are absolutely new and more general than previous results (Fan et al. in Phys Lett A 17:376–380, 2001; Feng and Wang in Phys Lett A 308:173– 178, 2003; Cimpoiasu in Roam J Phys 59:617–624, 2014; Arora and Chauhan in Int J Appl Comput Math 5:1–13, 2019) as that contain both the arbitrary functions f1(t) and f2(t) as well as arbitrary constants. Due to existence of arbitrary constants and functions that may describe rich physical behavior. We discuss these solutions corporeally with their numerical simulation. Consequently, parabolic, elastic multi-soliton, compacton and their annihilation profiles are discussed systematically to make these findings more worthy

  • Referencias bibliográficas
    • 1. Pakzad, H.R.: Ion acoustic shock waves in dissipative plasma with superthermal electrons and positrons. Astrophys. Space Sci. 331, 169–174...
    • 2. Tribeche, M., Boubakour, N.: Small amplitude ion-acoustic double layers in a plasma with superthermal electrons and thermal positrons....
    • 3. Adhikary, N.C.: Effect of viscosity on dust-ion acoustic shock wave in dusty plasma with negative ions. Phys. Lett. A 376, 1460–1464 (2012)
    • 4. Michael, M., Willington, N.T., Jayakumar, N., Sebastian, S., Sreekala, G., Venugopal, C.: Korteweg– deVries–Burgers (KdVB) equation in...
    • 5. Ghai, Y., Kaur, N., Singh, K., Saini, N.S.: Dust acoustic shock waves in magnetized dusty plasma. Plasma Sci. Technol. 20, 074005 (2018)
    • 6. Parkes, E.J.: Exact solutions to the two-dimensional Korteweg–de Vries–Burgers equation. J. Phys. A: Math. Gen. 27, L497–L501 (1994)
    • 7. Fan, E., Zhang, J., Hon, B.Y.C.: A new complex line soliton for the two-dimensional KdV–Burgerss equation. Phys. Lett. A 17, 376–380 (2001)
    • 8. Feng, Z., Wang, X.: The first integral method to the two-dimensional Burgers–Korteweg–de Vries equation. Phys. Lett. A 308, 173–178 (2003)
    • 9. Cimpoiasu, R.: Symmetry reduction and new wave solutions for the 2D Burger Kortweg–de Vries equation. Roam. J. Phys. 59, 617–624 (2014)
    • 10. Arora, R., Chauhan, A.: Lie symmetry analysis and some exact solutions of (2+1)-dimensional KdV– Burgers equation. Int. J. Appl. Comput....
    • 11. Samanta, U.K., Chatterjee, P., Mej, M.: Soliton and shocks in pair ion plasma in presence of superthermal electron. Astrophys. Space Sci....
    • 12. Washimi, H., Taniuti, T.: Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996–998 (1966)
    • 13. Seadawy, A.R.: Solitary wave solutions of two-dimensional nonlinear Kadomtsev–Petviashvili dynamic equation in dust-acoustic plasmas....
    • 14. Seadawy, A.R.: Three-dimensional nonlinear modified Zakharov–Kuznetsov equation of ion-acoustic waves in a magnetized plasma. Comput....
    • 15. Johnson, R.S.: A nonlinear equation incorporating damping and dispersion. J. Fluid Mech. 42, 49–60 (1970)
    • 16. Benney, D.J.: Long waves on liquid films. Math. Phys. 45, 150–155 (1966)
    • 17. Johnson, R.S.: Shallow water waves on a viscous fluid-the undular bore. Phys. Fluids 15, 1693–1699 (1972)
    • 18. Gao, G.: A theory of interaction between dissipation and dispersion of turbulence. Sci. Sin. (Ser. A) 28, 616–627 (1985)
    • 19. Wijngaarden, L.V.: On the motion of gas bubbles in a perfect fluid. Ann. Rev. Fluid Mech. 4, 369–373 (1972)
    • 20. Grad, H., Hu, P.N.: Unified shock profile in a plasma. Phys. Fluids 10, 2596–2602 (1967)
    • 21. Hu, P.N.: Collisional theory of shock and nonlinear waves in a plasma. Phys. Fluids 15, 854–864 (1972)
    • 22. Liu, S.D., Liu, S.K.: KdV–Burgers equation modelling of turbulence. Sci. Sin. Ser. A 35, 576–586 (1992)
    • 23. Yu, Y., Ma, H.C.: Exact solutions of the combined KdV–Burgers equation with variable coefficients. Appl. Math. Comput. 215, 3534–3540...
    • 24. Alharbi, A.R., Almatrafi, M.B., Seadawy, A.R.: Construction of the numerical and analytical wave solutions of the Joseph–Egri dynamical...
    • 25. Almatrafi, M.B., Alharbi, A.R., Seadawy, A.R.: Structure of analytical and numerical wave solutions for the Ito integro-differential equation...
    • 26. Younas, U., Seadawy, A.R., Younis, M., Rizvi, S.T.R.: Dispersive of propagation wave structures to the Dullin–Gottwald–Holm dynamical...
    • 27. Rizvi, S.T.R., Seadawy, A.R., Ali, I., Bibi, I., Younis, M.: Chirp-free optical dromions for the presence of higher order spatio-temporal...
    • 28. Seadawy, A.R., Cheemaa, N.: Applications of extended modified auxiliary equation mapping method for high-order dispersive extended nonlinear...
    • 29. Seadawy, A.R., Cheemaa, N.: Propagation of nonlinear complex waves for the coupled nonlinear Schrödinger Equations in two core optical...
    • 30. Seadawy, A.R., Lu, D., Iqbal, M.: Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir...
    • 31. Lu, D., Seadawy, A.R., Iqbal, M.: Mathematical methods via construction of traveling and solitary wave solutions of three coupled system...
    • 32. Özkan, Y.S., Ya¸sar, E., Seadawy, A.R.: On the multi-waves, interaction and Peregrine-like rational solutions of perturbed Radhakrishnan-Kundu-Lakshmanan...
    • 33. Tanwar, D.V., Wazwaz, A.M.: Lie symmetries, optimal system and dynamics of exact solutions of (2+1)-dimensional KP-BBM equation. Phys....
    • 34. Hu, X., Li, Y., Chen, Y.: A direct algorithm of one-dimensional optimal system for the group invariant solutions. J. Math. Phys. 56, 053504...
    • 35. Raja Sekhar, T., Satapathy, P.: Group classification for isothermal drift flux model of two phase flows. Comput. Math. Appl. 72, 1436–1443...
    • 36. Bluman, G.W., Cole, J.D.: Similarity Methods for Differential Equations. Springer, New York (1974)
    • 37. Kumar, M., Tiwari, A.K., Kumar, R.: Some more solutions of Kadomtsev–Petviashvili equation. Comput. Math. Appl. 74, 2599–2607 (2017)
    • 38. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)
    • 39. Kumar, M., Tanwar, D.V., Kumar, R.: On closed form solutions of (2+1)-breaking soliton system by similarity transformations method....
    • 40. Kumar, M., Tanwar, D.V.: Lie symmetry reductions and dynamics of solitary wave solutions of breaking soliton equation. Int. J. Geom. Methods...
    • 41. Kumar, M., Tanwar, D.V.: On some invariant solutions of (2+1)-dimensional Korteweg–de Vries equations. Comput. Math. Appl. 76, 2535–2548...
    • 42. Kumar,M., Tanwar, D.V.: Lie symmetries and invariant solutions of (2+1)-dimensional breaking soliton equation. Pramana J. Phys. 94,...
    • 43. Tanwar, D.V., Wazwaz, A.M.: Lie symmetries and dynamics of exact solutions of dissipative Zabolotskaya–Khokhlov equation in nonlinear...
    • 44. Tanwar, D.V., Kumar, M.: Lie symmetries, exact solutions and conservation laws of the Date-JimboKashiwara-Miwa equation. Nonlinear Dyn....
    • 45. Li, J., Zhou, Y.: Exact solutions in invariant manifolds of some higher-order models describing nonlinear waves. Qual. Theory Dyn. Syst....
    • 46. Chang, L., Liu, H., Zhang, L.: Symmetry reductions, dynamical behavior and exact explicit solutions to a class of nonlinear shallow water...
    • 47. Tanwar, D.V., Ray, A.K., Chauhan, A.: Lie symmetries and dynamical behavior of soliton solutions of KP-BBM equation. Qual. Theory Dyn....
    • 48. Tanwar, D.V.: Optimal system, symmetry reductions and group-invariant solutions of (2+1)- dimensional ZK-BBM equation. Phys. Scr....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno