Ir al contenido

Documat


Symmetry Reductions, Dynamical Behavior and Exact Explicit Solutions to a Class of Nonlinear Shallow Water Wave Equation

  • Chang, Lina [1] ; Liu Hanze [1] ; Zhang, Lijun [2]
    1. [1] Liaocheng University

      Liaocheng University

      China

    2. [2] Shandong University of Science and Technology

      Shandong University of Science and Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 1, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00380-7
  • Enlaces
  • Resumen
    • By using Lie symmetry analysis and dynamical systems method for a class of nonlinear shallow water wave equation, the exact solutions based on the Lie group method are provided. Especially, the bifurcations and exact explicit parametric representations of the traveling solutions are given, and the possible solitary wave solutions and many uncountable infinite periodic wave solutions to the nonlinear equation are obtained. To guarantee the existence of the above solutions, all parameter conditions are determined. Furthermore, we give some exact analytic solutions by using the power series method. This result enriches the types of solutions of nonlinear shallow water wave equation and has important physical significance for further study of this kind of equation.

  • Referencias bibliográficas
    • 1. Khan, K., Akbar, M.A.: The (exp)(−φ)-expansion method for finding Traveling wave solutions of Vakhnenko–Parkes equation. Int. J. Dyn. Syst....
    • 2. Khater, M.M.A.: Exact traveling wave solutions for the generalized Hirota–Satsuma couple KdV system using the (exp)(−φ)-expansion method....
    • 3. Hafez, M.G.: Exact solutions to the (3+1)-dimensional coupled Klein–Gordon–Zakharov equation using (exp)(−φ)-expansion method. Alex....
    • 4. Kadkhode, N., Jafari, H.: Analytical solutions of the Gerdjikov–Ivanov equation by using (exp)(−φ)- expansion method. Optik. Int. J. Light....
    • 5. Wang, M.L., Li, X.Z., Zhang, J.Z.: The ( G G )-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical...
    • 6. Yong, M.: Expanded ( G G2 ) expansion method to solve separated variables for the (2+1)-dimensional NNV equation. Adv. Math. Phys....
    • 7. Bibi, S., Mohyuddin, S.T., Ullah, R.: Exact solutions for STO and (3+1)-dimensional KdV–ZK equations using ( G G2 )-expansion method....
    • 8. Singh, M., Gupta, R.K.: Explicit exact solutions for variable coefficient gardner equation: an application of Riccati equation mapping...
    • 9. Tala-Tebue, E., Djoufack, Z.I., Fendzi-Donfack, E.: Exact solutions of the unstable nonlinear Schrodinger equation with the new Jacobi...
    • 10. Lou, S.Y., Hu, X.B.: Infinitely many Lax pairs and symmetry constraints of the KP equation. J. Math. Phys. 38, 6401–6427 (1997)
    • 11. Xin, X.P., Miao, Q., Chen, Y.: Nonlocal symmetry, optimal systems, and explicit solutions of the mKdV equation. Chin. Phys. B 23, 010203...
    • 12. Liu, H., Xin, X., Wang, Z.: Backlund transformation classification, integrability and exact solutions to the generalized Burgers–KdV equation....
    • 13. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge...
    • 14. Chen, M., Liu, X.: Exact solutions and conservation laws of the Konopelchenko–Dubrovsky equations. Pure Appl. Math. 27, 533 (2011)
    • 15. Liu, H., Sang, B., Xin, X., Liu, X.: CK transformations, symmetries, exact solutions and conservation laws of the generalized variable-coefficient...
    • 16. Cao, L., Si, X., Zheng, L.: Convection of Maxwell fluid over stretching porous surface with heat source/sink in presence of nanoparticles:...
    • 17. Ray, S.S.: Lie symmetry analysis and reduction for exact solution of (2+1)-dimensional Bogoyavlensky–Konopelchenko equation by geometric...
    • 18. Dong, M., Tian, S., Yan, X., Zhang, T.: Nonlocal symmetries, conservation laws and interaction solutions for the classical Boussinesq–Burgers...
    • 19. Yan, X., Tian, S., Dong, M., Wang, X., Zhang, T.: Nonlocal symmetries, conservation laws and interaction solutions of the generalised...
    • 20. Wang, X., Tian, S., Qin, C., Zhang, T.: Lie symmetry analysis, conservation laws and analytical solutions of a time-fractional generalized...
    • 21. Feng, L., Tian, S., Zhang, T., Zhou, J.: Nonlocal symmetries, consistent Riccati expansion, and analytical solutions of the variant Boussinesq...
    • 22. Peng, W., Tian, S., Zhang, T.: Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrödinger equation. Europhys....
    • 23. Wang, X., Tian, S., Qin, C., Zhang, T.: Lie symmetry analysis, analytical solutions, and conservation laws of the generalised Whitham–Broer–Kaup-Like...
    • 24. Wang, Z., Liu, X.: Bifurcations and exact traveling wave solutions for the KdV-like equation. Nonlinear Dyn. 95, 465–477 (2019)
    • 25. Liu, H., Li, J.: Symmetry reductions, dynamical behavior and exact explicit solutions to the Gordon types of equations. J. Comput. Appl....
    • 26. Liu, H., Li, J.: Lie symmetry analysis and exact solutions for the extended mKdV equation. Acta Appl. Math. 109, 1107–1119 (2010)
    • 27. Li, J.: Bifurcations of travelling wave solutions for two generalized Boussinesq systems. Sci. China Ser. A: Math. 51, 1577–1592 (2008)
    • 28. Tu, J.M., Tian, S.F., Xu, M.J., Zhang, T.T.: On Lie symmetries, optimal systems and explicit solutions to the Kudryashov–Sinelshchikov...
    • 29. Nourazar, S.S., Soori, M., Nazari-Golshan, A.: On the exact solution of Burgers–Huxley equation using the homotopy perturbation method....
    • 30. Yin, J.L., Tian, L.X., Gui, G.L.: Symmetry reduction and exact solution of generalized Camassa–Holm equation. J. Jiangsu Univ. (in Chinese)...
    • 31. Degasperis, A., Procesi, M.: Asymptotic integrability. In: Degasperis, A., Gaeta, G. (eds.) Symmetry and Perturbation Theory, pp. 23–37....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno