Ir al contenido

Documat


Exact Solutions in Invariant Manifolds of Some Higher-Order Models Describing Nonlinear Waves

  • Li, Jibin [1] ; Zhou, Yan [2]
    1. [1] Huaqiao University

      Huaqiao University

      China

    2. [2] Huaqiao University, University of Science and Technology of China
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 18, Nº 1, 2019, págs. 183-199
  • Idioma: inglés
  • DOI: 10.1007/s12346-018-0283-2
  • Enlaces
  • Resumen
    • In this paper, we study the exact traveling wave solutions for five high-order nonlinear wave equations using the dynamical system approach. Based on Cosgrove’s work and the dynamical system method, infinitely many soliton solutions and quasi-periodic solutions are presented in an explicit form. We show the existence of uncountably infinite many double-humped solitary wave solutions. We discuss the parameters range as well as geometrical explanation of soliton solutions.

  • Referencias bibliográficas
    • 1. Byrd, P.F., Fridman, M.D.: Handbook of Elliptic Integrals for Engineers and Sciensists. Springer, Berlin (1971)
    • 2. Cao, Z.: Algebraic-geometric solutions to (2+1)-dimensional Sawada–Kotera equation. Commun. Theor. Phys. 49, 31–36 (2008)
    • 3. Chazy, J.: Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes....
    • 4. Christou, M.A.: Sixth order solitary wave equations. Wave Motion 71, 18–24 (2017)
    • 5. Cosgrove, M.C.: Higher-order Painleve equations in the polynomial class I. Bureau symbol P2. Stud. Appl. Math. 104, 1–65 (2000)
    • 6. Feng, L., Tian, S., Wang, X., Zhang, T.: Rogue wave, homoclinic breather waves and soliton waves for the (2+1)-dimensional B-type Kadomtsev–Petviashvili...
    • 7. Kudryashov, N.A., Mikhail, B.S., Demina, M.A.: Elliptic traveling waves of the Olver equation. Commun. Nonlinear Sci. Numer. Simulat. 17,...
    • 8. Li, J., Zhang, Y.: The geometric property of soliton solutions for the integrable KdV6 equations. J. Math. Phys. 51, 043508-1–043508-7...
    • 9. Li, J., Zhang, Y.: On the travelling wave solutions for a nonlinear diffusion-convection equation: dynamical system approach. Discrete...
    • 10. Li, J., Qiao, Z.: Explicit soliton solutions of Kaup–Kupershmidt equation through the dynamical system approach. J. Appl. Anal. Comput....
    • 11. Li, J., Zhang, Y.: Homoclinic manifolds, center manifolds and exact solutions of four-dimensional travelling wave systems for two classes...
    • 12. Li, J., Zhang, Y.: Exact travelling wave solutions to two integrable KdV6 equations. Chin. Ann. Math. Ser. B 33B(2), 179–190 (2012)
    • 13. Li, J., Chen, F.: Exact travelling wave solutions and their dynamical behavior for a class coupled nonlinear wave equations. Discrete...
    • 14. Li, X., Wang, Y., Chen, M., Li, B.: Lump solutions and resonance stripe solitons to the (2+1)- dimensional Sawada–Kotera equation....
    • 15. Mancas, S.C., Adams, R.: Elliptic solutions and solitary waves of a higher order KdV-BBM long wave equation. J. Math. Anal. Appl. 452,...
    • 16. Olver, P.J.: Hamiltonian and non-Hamiltonian models for water waves. Trends and Applications of Pure Mathematics to Mechanics, 195 of...
    • 17. Seadawy, A.R., Amer, W., Sayed, A.: Stability analysis for travelling wave solutions of the Olver and fifth-order KdV equations. Hindawi...
    • 18. Yagasaki, K.,Wagenknecht, T.: Detection of symmetric homoclinic orbits to saddle-centres in reversible systems. Physica D 214, 169–181...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno