Ir al contenido

Documat


Lie Symmetries and Dynamical Behavior of Soliton Solutions of KP-BBM Equation

  • Tanwar, Dig Vijay [1] ; Ray, Atul Kumar [2] ; Chauhan, Anand [1]
    1. [1] Graphic Era Deemed to be University
    2. [2] Madhav Institute of Technology & Science
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 1, 2022
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00557-8
  • Enlaces
  • Resumen
    • In this work, Lie symmetry method is employed to obtain invariant solutions of KP-BBM equation. It represents propagation of bidirectional small amplitude waves in nonlinear dispersive medium. The infinitesimal generators and their commutative relations are derived using invariance under one parameter transformation. These infinitesimal generators lead to reductions of KP-BBM equation into ODEs under two stages and thus exact solutions are constructed consisting several arbitrary constants. To analyze the physical phenomena, these solutions are expanded graphically with numerical simulation. Consequently, multisoliton, doubly soliton, compacton, soliton fusion, parabolic nature and annihilation profiles of solutions are demonstrated to validate these obtained results with physical phenomena and make the findings worthy.

  • Referencias bibliográficas
    • 1. Wazwaz, A.M.: Exact solutions of compact and noncompact structures for the KP-BBM equation. Appl. Math. Comput. 169, 700–712 (2005)
    • 2. Wazwaz, A.M.: The extended tanh method for new compact and noncompact solutions for the KP-BBM and the ZK-BBM equations. Chaos Solitons...
    • 3. Abdou, M.A.: Exact periodic wave solutions to some nonlinear evolution equations. Int. J. Nonlinear Sci. 6, 145–153 (2008)
    • 4. Tang, S., Huang, X., Huang, W.: Bifurcations of travelling wave solutions for the generalized KP-BBM equation. Appl. Math. Comput. 216,...
    • 5. Song, M., Yang, C., Zhang, B.: Exact solitary wave solutions of the Kadomtsov-Petviashvili-BenjaminBona-Mahony equation. Appl. Math. Comput....
    • 6. Yu, Y., Ma, H.C.: Explicit solutions of (2+1)-dimensional nonlinear KP-BBM equation by using Expfunction method. Appl. Math. Comput....
    • 7. Alam, M.N., Akbar, M.A.: Exact traveling wave solutions of the KP-BBM equation by using the new approach of generalized (G /G)-expansion...
    • 8. Manafian, J., Ilhan, O.A., Alizadeh, A.: Periodic wave solutions and stability analysis for the KP-BBM equation with abundant novel interaction...
    • 9. Manafian, J., Murad, M.A.S., Alizadeh, A., Jafarmadar, S.: M-lump, interaction between lumps and stripe solitons solutions to the (2+1)-dimensional...
    • 10. Tanwar, D.V., Wazwaz, A.M.: Lie symmetries, optimal system and dynamics of exact solutions of (2+1)-dimensional KP-BBM equation. Phys....
    • 11. Kumar, S., Kumar, D., Kharbanda, H.: Lie symmetry analysis, abundant exact solutions and dynamics of multisolitons to the (2+1)-dimensional...
    • 12. Mekki, A., Ali, M.M.: Numerical simulation of Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equations using finite difference method. Appl....
    • 13. Rosenau, P., Hyman, J.M.: ompactons: solitons with finite wavelength. Phys. Rev. Lett. 70, 564–567 (1993)
    • 14. Hammack, D., McCallister, N., Schener, N., Segur, N., Schener, H.: Two-dimensional periodic waves in shallow water. II. Asymmetric waves....
    • 15. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970)
    • 16. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Land....
    • 17. Bluman, G.W., Cole, J.D.: Similarity Methods for Differential Equations. Springer-Verlag, New York (1974)
    • 18. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer-Verlag, New York (1993)
    • 19. Ma, H.C.: Generating Lie point symmetry groups of (2+1)-dimensional Broer-Kaup equation via a simple direct method. Commun. Theor....
    • 20. Lou, S.Y., Ma, H.C.: Finite symmetry transformation groups and exact solutions of Lax integrable systems. Chaos Solitons Fractals 30,...
    • 21. Lou, S.Y., Ma, H.C.: Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method. J. Phys....
    • 22. Kumar, M., Tanwar, D.V., Kumar, R.: On closed form solutions of (2+1)-breaking soliton system by similarity transformations method....
    • 23. Kumar, M., Tanwar, D.V., Kumar, R.: On Lie symmetries and soliton solutions of (2+1)-dimensional Bogoyavlenskii equations. Nonlinear...
    • 24. Kumar, M., Tanwar, D.V.: On Lie symmetries and invariant solutions of (2+1)-dimensional Gardner equation. Commun. Nonlinear Sci. Numer....
    • 25. Kumar, M., Tanwar, D.V.: Lie symmetry reductions and dynamics of solitary wave solutions of breaking soliton equation. Int. J. Geom. Methods...
    • 26. Kumar, M., Tanwar, D.V.: On some invariant solutions of (2+1)-dimensional Korteweg-de Vries equations. Comput. Math. Appl. 76, 2535–2548...
    • 27. Kumar,M., Tanwar, D.V.: Lie symmetries and invariant solutions of (2+1)-dimensional breaking soliton equation. Pramana-J. Phys. 94,...
    • 28. Tanwar, D.V., Wazwaz, A.M.: Lie symmetries and dynamics of exact solutions of dissipative Zabolotskaya-Khokhlov equation in nonlinear...
    • 29. Polat, G.G., Özer, T.: The group-theoretical analysis of nonlinear optimal control problems with hamiltonian formalism. J. Nonlinear Math....
    • 30. Li, J., Zhou, Y.: Exact solutions in invariant manifolds of some higher-order models describing nonlinear waves. Qual. Theory Dyn. Syst....
    • 31. Chang, L., Liu, H., Zhang, L.: Symmetry reductions, dynamical behavior and exact explicit solutions to a class of nonlinear shallow water...
    • 32. Tanwar, D.V.: Optimal system, symmetry reductions and group-invariant solutions of (2+1)- dimensional ZK-BBM equation. Phys. Scr....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno