Ir al contenido

Documat


Fomento de la flexibilidad matemática a través de una secuencia de tareas de modelización

    1. [1] Universitat de València

      Universitat de València

      Valencia, España

  • Localización: Avances de investigación en educación matemática: AIEM, ISSN-e 2254-4313, Nº. 17, 2020, págs. 84-97
  • Idioma: español
  • DOI: 10.35763/aiem.v0i17.306
  • Títulos paralelos:
    • Fostering mathematical flexibility through a sequence of modelling tasks
  • Enlaces
  • Resumen
    • español

      El fomento de la flexibilidad y adaptabilidad en resolución de problemas matemáticos favorece el desarrollo de la competencia matemática. En este estudio se describe y justifica el diseño de una secuencia de tareas de modelización que permite analizar la flexibilidad inter-tarea en los estudiantes.

      El objetivo central del estudio es analizar si los estudiantes son capaces de adaptar sus planes de resolución según aspectos relativos al contexto de la tarea, cambiando de estrategia de una tarea a otra, si estos aspectos varían. En el estudio han participado 110 estudiantes del grado de Maestro/a en Educación Primaria; los resultados permiten conocer en qué medida son flexibles los estudiantes y saben adaptar sus planes de resolución a las tareas, y concluir que la flexibilidad inter-tarea puede promoverse a través de determinadas secuencias de tareas de modelización.

    • English

      The promotion of flexibility and adaptability in mathematical problem solving fosters the development of mathematical competence. This study describes and justifies the design of a sequence of modelling tasks that allows the analysis of inter-task flexibility in students. The central objective of the study is to analyse whether students are able to adapt their resolution plans according to aspects related to the task context, changing their strategy from one task to another, if these aspects vary. The study involved 110 students of the Primary Education Teacher grade; the results allow us to understand to what extent the students are flexible and know how to adapt their resolution plans to the tasks, as well as to conclude that inter-task flexibility can be promoted through certain modelling task sequences.

  • Referencias bibliográficas
    • Achmetli, K., Schukajlow, S., & Rakoczy, K. (2018). Multiple solutions for real-worldnproblems, experience of competence and students’...
    • Albarracín, L., & Gorgorió, N. (2014). Devising a plan to solve Fermi problems involving large numbers. Educational Studies in Mathematics,...
    • Ärlebäck, J. B. (2009). On the use of realistic Fermi problems for introducing mathematical modelling in school. The Montana Mathematics Enthusiast,...
    • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects. State, trends...
    • Blum, W., & Leiss, D. (2007). How do students and teachers deal with mathematical modelling problems? The example sugarloaf and the DISUM...
    • Borromeo-Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM Mathematics Education, 38(2),...
    • Borromeo-Ferri, R. (2018). Learning how to teach mathematical modeling in school and teacher education. Nueva York: Springer.
    • CCSSI (2010). Common Core State Standards for Mathematics. Washington, D.C.
    • Efthimiou, C. J., & Llewellyn, R. A. (2007). Cinema, Fermi problems and general education. Physics Education, 42(42), 253–261.
    • Elia, I., van den Heuvel-Panhuizen, M., & Kolovou, A. (2009). Exploring strategy use and strategy flexibility in non-routine problem solving...
    • Ferrando, I., Albarracín, L., Gallart, C., García-Raffi, L. M., & Gorgorió, N. (2017).Análisis de los modelos matemáticos producidos durante...
    • Ferrando, I., Segura, C., & Pla-Castells, M. (2019a). Relation entre contexte, situation et plan de solution dans des problèmes complexes....
    • Ferrando, I., Segura, C., & Pla-Castells, M. (2019b). How many can fit here? Same question, differents resolutions: Analysis of the relationship...
    • Gallart, C., Ferrando, I., García-Raffi, L. M., Albarracín, L., & Gorgorió, N. (2017). Design and implementation of a tool for analysing...
    • Goldin, G. A., & McClintock, C. E. (Eds.) (1979). Task variables in mathematical problem solving. Columbus, OH: The Ohio State University.
    • Heinze, A., Star, J.R., & Verschaffel, L. (2009). Flexible and adaptive use of strategies and representations in mathematics education....
    • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM Mathematics...
    • Kilpatrick, J. (1978). Variables and methodologies in research on problem solving. En L. L. Hatfield & D. A. Bradbard (Eds.) Mathematical...
    • Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up. Helping children learn mathematics. Washington DC: National Academy...
    • Leikin, R., & Levav-Waynberg, A. (2008). Solution spaces of multiple-solution connecting tasks as a mirror of the development of mathematics...
    • Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning, 5(2), 157–189.
    • Levav-Waynberg, A., & Leikin, R. (2012). The role of multiple solution tasks in developing knowledge and creativity in geometry. The Journal...
    • Peter-Koop, A. (2009). Teaching and understanding mathematical modelling through Fermi-problem. En B. Clarke, B. Grevholm, & R. Millman...
    • Puig, L., & Cerdán, F. (1988). Problemas aritméticos escolares. Madrid: Síntesis.
    • Schukajlow, S., Krug, A., & Rakoczy, K. (2015). Effects of prompting multiple solutions for modelling problems on students’ performance....
    • Sriraman, B., & Lesh, R. A. (2006). Modeling conceptions revisited. ZDM Mathematics Education, 38(3), 247–254.
    • Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36(5), 404–411.
    • Star, J. R., & Rittle-Johnson, B. (2008). Flexibility in problem solving: The case of equation solving. Learning and Instruction, 18(6),...
    • Webb, N. L. (1980). Content and context variables in problem tasks. En G. A. Goldin & C. E. McClintock (Eds.), Task variables in mathematical...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno