Ir al contenido

Documat


Conocimiento conceptual y procedimental en matemáticas: su evolución tras décadas de investigación

  • Ángela Castro [1] ; Montserrat Prat [1] ; Núria Gorgorió [1]
    1. [1] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

  • Localización: Revista de educación, ISSN 0034-8082, Nº 374, 2016, págs. 43-68
  • Idioma: español
  • DOI: 10.4438/1988-592X-RE-2016-374-325
  • Títulos paralelos:
    • Conceptual and procedural Knowledge in mathematics: their development after decades of research
  • Enlaces
  • Resumen
    • español

      La investigación en relación al conocimiento conceptual y al conocimiento procedimental en matemáticas ha sido tema de interés y foco de debate a lo largo de los años. En la literatura se encuentran discusiones que abordan desde qué debe desarrollarse en mayor medida en la escuela, si las habilidades o los procedimientos; hasta propuestas acerca de cómo deben estudiarse las interacciones entre ambos tipos de conocimiento. Este trabajo analiza la situación actual del campo a través de la revisión de las caracterizaciones más relevantes presentes en la literatura para ambos tipos de conocimiento, las razones que originaron cambios de enfoque en las investigaciones, las problemáticas actuales y las líneas abiertas de investigación. A su vez, se aporta un cuadro-resumen de los estudios más relevantes según cada tipo de conocimiento, poniendo el foco en el dominio matemático al que pertenecen. Las investigaciones consultadas sugieren que inicialmente los estudios sobre el conocimiento conceptual y procedimental se centraron en niños, extendiéndose posteriormente su estudio a adolescentes, adultos jóvenes y estudiantes para maestro. En un primer momento, las investigaciones sobre estos tipos de conocimiento se centraron esencialmente en los dominios de conteo, adición con uno y varios dígitos, fracciones y razonamiento proporcional; intentado en la mayoría de los casos, determinar el orden de adquisición de los conceptos versus habilidades. Con el trascurso de los años el interés por estos dos tipos de conocimiento se ha acrecentado, y su estudio se ha extendido hacia otros dominios matemáticos, como por ejemplo, las ecuaciones, principios de adición y la substracción, multiplicación y división. No obstante, se observa en este trabajo, que tras décadas de investigación no existe un consenso acerca de cómo definir y medir el conocimiento conceptual y procedimental con un grado suficiente de validez.

    • English

      Investigations related to the conceptual and procedural knowledge in mathematics have been an object of interest and focus of debate throughout the years. In the literature is possible to find discussions that address from which should be further developed in school, if the skills or procedures; up to proposals about how to study interactions between both types of knowledge. This paper analyses the current situation in the field by reviewing the most relevant characterizations in the literature for both types of knowledge, the reasons that led to changes in research focus, the current problems and the open lines of research. In turn, contributes with a summary table of the most significant studies in the literature of each type of knowledge on focus on the mathematical domain to which they belong. The consulted research suggests that initially the studies about conceptual and procedural knowledge focused on children, and being later extended on adolescents, young adults and pre-service teachers. Initially, research on types of knowledge mainly focused on the counting domains, single-digit addition, multi-digit addition, fractions and proportional reasoning; trying in most cases, determine the acquisition order of the concepts versus skills. Over the years the interest in these two types of knowledge has increased, and its study has been extended to other mathematical domains, such as equations, principles of addition and subtraction, multiplication and division. Nevertheless, it is observed in this work that after decades of research there is no consensus about how to define and measure the conceptual and procedural knowledge with an adequate validity level.

  • Referencias bibliográficas
    • Bailey, D., Zhou, X., Zhang, Y., Cui, J., Fuchs, L., Jordan, N., Gersten, R., & Siegler, R. (2015). Development of fraction concepts and...
    • Baroody, A. (2003). The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge. In A. Baroody...
    • Baroody, A., Feil, Y., & Johnson, A. (2007). An alternative reconceptualization of procedural and conceptual knowledge. Journal for Research...
    • Baroody, A., & Ginsburg, P. (1986): The relationship between initial meaningful and mechanical knowledge of arithmetic. In J. Hiebert...
    • Baroody, A., & Lai, M. (2007). Preschoolers’ understanding of the addition–subtraction inversion principle: A Taiwanese sample. Mathematical...
    • Baroody, A., Lai, M., Li, X., & Baroody, A. E. (2009). Preschoolers’ understanding of subtraction-related principles. Mathematical Thinking...
    • Baroody, A., Torbeyns, J., & Verschaffel, L. (2009). Young children’s understanding and application of subtraction-related principles....
    • Bell, A., Costello, J. & Küchemann, D. (1983). Research on learning and teaching. A Review of Research in Mathematical Education. Windsor:...
    • Berk, D., Taber, S., Carrino, C., & Poetzl, C. (2009). Developing prospective elementary teachers’ flexibility in the domain of proportional...
    • Bisanz, J., & LeFevre, J. (1992). Understanding elementary mathematics. Advances in Psychology, 91, 113-136.
    • Bisanz, J., Watchorn, R., Piatt, C., & Sherman, J. (2009). On “Understanding” children’s developing use of inversion. Mathematical Thinking...
    • Blessing, S., & Anderson, J. (1996). How people learn to skip steps. Journal of Experimental Psychology: Learning, Memory, and Cognition,...
    • Blöte, A., Klein, A., & Beishuizen, M. (2000). Mental computation and conceptual understanding. Learning and Instruction, 10, 221-247.
    • Blöte, A., Van der Burg, E., & Klein, A. (2001). Students’ flexibility in solving two-digit addition and subtraction problems: Instruction...
    • Briars, D., & Larkin, J. (1984). An integrated model of skill in solving elementary word problems. Cognition and Instruction, 1, 245-296.
    • Briars, D., & Siegler, R. (1984). A featural analysis of preschoolers’ counting knowledge. Developmental Psychology, 20(4), 607-618.
    • Brownell, W. A., & Chazal, C. B. (1935). The effects of premature drill in third-grade arithmetic. The Journal of Educational Research,...
    • Bruner, J. (1960). The Process of Education: A Searching Discussion of School Education Opening New Paths to Learning and Teaching. New York:...
    • Byrnes, J. (1992). The conceptual basis of procedural learning. Cognitive Development, 7, 235257
    • Byrnes, J., & Wasik, B. (1991). Role of conceptual knowledge in mathematical procedural learning. Developmental Psychology, 27(5), 777-786.
    • Bryant, P., Christie, C., & Rendu, A. (1999). Children’s understanding of the relation between addition and subtraction: Inversion, identity,...
    • Canobi, K. (2004). Individual differences in children’s addition and subtraction knowledge. Cognitive Development, 19, 81-93.
    • Canobi, K. (2005). Children’s profiles of addition and subtraction understanding. Journal of Experimental Child Psychology, 92, 220-246.
    • Canobi, K. (2009). Concept–procedure interactions in children’s addition and subtraction. Journal of Experimental Child Psychology, 102, 131–...
    • Canobi, K., & Bethune, N. (2008). Number words in young children’s conceptual and procedural knowledge of addition, subtraction and inversion....
    • Canobi, K., Reeve, R., & Pattison, P. (1998). The Role of Conceptual Understanding in Children’s Addition Problem Solving. Developmental...
    • Canobi, K., Reeve, R., & Pattison, P. (2002). Young Children’s Understanding of Addition Concepts. Educational Psychology: An International...
    • Canobi, K., Reeve, R., & Pattison, P. (2003). Patterns of Knowledge in Children’s Addition. Developmental Psychology, 39(3), 521-534.
    • Carpenter, T. (1986). Conceptual knowledge as foundation for procedural knowledge. In J. Hiebert (Ed.), Conceptual and Procedural Knowledge:...
    • Chinnappan, M., & Forrester, T. (2014). Generating procedural and conceptual knowledge of fractions by pre-service teachers. Mathematics...
    • Cowan, R., & Renton, M. (1996). Do they know what they are doing? Children’s use of economical addition strategies and knowledge of commutativity....
    • Crooks, N., Alibali, M. (2014). Defining and measuring conceptual knowledge in mathematics. Developmental Review; 34(4), 344377.Dixon, J.,...
    • Dubé, A. (2014). Adolescents’ understanding of inversion and associativity. Learning and Individual Differences, 36, 49-59.
    • Dubé, A., & Robinson, K. (2010). The relationship between adults’ conceptual understanding of inversion and associativity. Canadian Journal...
    • Fayol, M., & Thevenot, C. (2012). The use of procedural knowledge in simple addition and subtraction problems. Cognition, 123(3), 392-403.
    • Farrington-Flint, L., Canobi, K. H., Wood, C., & Faulkner, D. (2007). The role of relational reasoning in children’s addition concepts....
    • Fuson, K. (1988). Children’s counting and concepts of number. SpringerVerlag Publishing.
    • Frye, D., Braisby, N., Lowe, J., Maroudas, C., & Nicholls, J. (1989). Young children’s understanding of counting and cardinality. Child...
    • Gagné, R.M. (1968). Contributions of Learning to human Development. Psychological Review, 75, 177-191.
    • Gelman, R., & Meck, E. (1983). Preschoolers’ counting: Principles before skill. Cognition, 13, 343-359.
    • Gelman, R., & Meck, E. (1986). The Notion of Principle: The Case of Counting. In Hiebert (Ed.), Conceptual and Procedural Knowledge: The...
    • Gilmore, C., & Bryant, P. (2006). Individual differences in children’s understanding of inversion and arithmetical skill. British Journal...
    • Gilmore, C., & Bryant, P. (2008). Can children construct inverse relations in arithmetic? Evidence for individual differences in the development...
    • Gilmore, C., & Papadatou-Pastou, M. (2009). Patterns of individual differences in conceptual understanding and arithmetical skill: A metaanalysis....
    • Gilmore, C. & Spelke, E. (2008). Children’s understanding of the relationship between addition and subtraction. Cognition, 107(3), 932945.
    • Gray, E.M., & Tall, D.O. (1991). Duality, ambiguity and flexibility in successful mathematical thinking. Proceedings of PME XV, vol. II,...
    • Gray, E.M., & Tall, D.O. (1994). Duality, ambiguity and flexibility: A “proceptual” view of simple arithmetic. Journal for Research in...
    • Groth, R., & Bergner, J. (2006). Preservice elementary teachers’ conceptual and procedural knowledge of mean, median, and mode. Mathematical...
    • Hallett, D., Nunes, T., & Bryant, P. (2010). Individual differences in conceptual and procedural knowledge when learning fractions. Journal...
    • Hallett, D., Nunes, T., Bryant, P., & Thorpe, C. (2012). Individual differences in conceptual and procedural fraction understanding: The...
    • Hecht, S., Close, L., & Santisi, M. (2003). Sources of individual differences in fraction skills. Journal of Experimental Child Psychology,...
    • Hiebert, J., & Lefevre, P. (1986): Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.),...
    • Hiebert, J., & Wearne, D. (1996). Instruction, understanding, and skill in multidigit addition and subtraction. Cognition and Instruction,...
    • Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping Children Learn Mathematics. Washington, DC: National...
    • LeFevre, J., Greenham, S., & Waheed, N. (1993). The development of procedural and conceptual knowledge in computational estimation. Cognition...
    • LeFevre, J., Smith-Chant, B., Fast, L., Skwarchuk, S., Sargla, E., Arnup, J., Penner-Wilger, M., Bisanz, J., & Kamawar, D. (2006). What...
    • Matthews, P., & Rittle-Johnson, B. (2009). In pursuit of knowledge: Comparing self-explanations, concepts, and procedures as pedagogical...
    • Oyarzún, C., & Salvo, S. (2010). Conocimiento conceptual y dificultades en la resolución de problemas verbales aritméticos en el nivel...
    • Patel, P., & Canobi, K. (2010). The role of number words in preschoolers’ addition concepts and problem-solving procedures. Educational...
    • Peled, I., & Segalis, B. (2005). It’s not too late to conceptualize: Constructing a generalized subtraction schema by abstracting and...
    • Prather, R., & Alibali, M. (2009). The development of arithmetic principle knowledge: How do we know what learners know? Developmental...
    • Prather, R., & Alibali, M. (2011). Children’s acquisition of arithmetic principles: The role of experience. Journal of Cognition and Development,...
    • Rayner, V., Pitsolantis, N., & Osana, H. (2009). Mathematics anxiety in preservice teachers: Its relationship to their conceptual and...
    • Riley, M., Greene, J., & Heller, J. (1983). Development of children’s problem solving ability in arithmetic. In H. Ginsberg (Ed.), The...
    • Rittle-Johnson, B., & Alibali, M. (1999). Conceptual and procedural knowledge of mathematics: Does one lead to the other? Journal of Educational...
    • Rittle-Johnson, B., & Kmicikewycz, A. (2008). When generating answers benefits arithmetic skill: The importance of prior knowledge. Journal...
    • Rittle-Johnson, B., & Koedinger, K. (2009). Iterating between lessons concepts and procedures can improve mathematics knowledge. British...
    • Rittle-Johnson, B. & Schneider, M. (2014). Developing conceptual and procedural knowledge of mathematics. To appear in R. Cohen Kadosh...
    • Rittle-Johnson, B., & Siegler, R. (1998). The relation between conceptual and procedural knowledge in learning mathematics: A review....
    • Rittle-Johnson, B., Siegler, R., & Alibali, M. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative...
    • Rittle-Johnson, B., & Star, J. (2007). Does comparing solution methods facilitate conceptual and procedural knowledge? An experimental...
    • Rittle-Johnson, B., & Star, J. (2009). Compared with what? The effects of different comparisons on conceptual knowledge and procedural...
    • Rittle-Johnson, B., Star, J., & Durkin, K. (2009). The importance of prior knowledge when comparing examples: Influences on conceptual...
    • Rittle-Johnson, B., Star, J., & Durkin, K. (2012). Developing procedural flexibility: Are novices prepared to learn from comparing procedures?...
    • Robinson, K., & Dubé, A. (2009). Children’s understanding of addition and subtraction concepts. Journal of Experimental Child Psychology,...
    • Robinson, K., & LeFevre, J. (2012). The inverse relation between multiplication and division: Concepts, procedures, and a cognitive framework....
    • Robinson, K., & Ninowski, J. (2003). Adults’ understanding of inversion concepts: How does performance on addition and subtraction inversion...
    • Robinson, K., Ninowski, J., & Gray, M. (2006). Children’s understanding of the arithmetic concepts of inversion and associativity. Journal...
    • Siegler, R. (1991). In young children’s counting, procedures precede principles. Educational Psychology Review, 3(2), 127-135.
    • Siegler, R., & Araya, R. (2005). A computational model of conscious and unconscious strategy discovery. Advances in Child Development...
    • Siegler, R., & Crowley, K. (1994). Constraints on learning in nonprivileged domains. Cognitive Psychology, 27(2), 194-226.
    • Siegler, R., & Stern, E. (1998). Conscious and unconscious strategy discoveries: A microgenetic analysis. Journal of Experimental Psychology:...
    • Schneider, M. (2012). Commentary 2: knowledge integration in mathematics learning: the case of inversion. Educational Studies in Mathematics,...
    • Schneider, M., & Hardy, I. (2000). Profiles of inconsistent knowledge in children’s pathways of conceptual change. Developmental Psychology,...
    • Schneider, M., Rittle-Johnson, B., & Star, J. (2011). Relations Among Conceptual Knowledge, Procedural Knowledge, and Procedural Flexibility...
    • Schneider, M., & Stern, E. (2005). Conceptual and procedural knowledge of a mathematics problem: Their measurement and their causal interrelations....
    • Schneider, M., & Stern, E. (2009). The inverse relation of addition and subtraction: A knowledge integration perspective. Mathematical...
    • Schneider, M., & Stern, E. (2010). The developmental relations between conceptual and procedural knowledge: A multimethod approach. Developmental...
    • Skemp, R. (1978). Relational understanding and instrumental understanding. The Arithmetic Teacher, 26(3), 9-15.
    • Star, J. (2000). On the relationship between knowing and doing in procedural learning. In B. Fishman & S. O’Connor-Divelbiss (Eds.), Fourth...
    • Star, J. (2002). Re-conceptualizing procedural knowledge: The emergence of» intelligent» performances among equation solvers. In D. Mewborn,...
    • Star, J. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36(5), 404–411.
    • Star, J. (2007). Foregrounding procedural knowledge. Journal for Research in Mathematics Education 38(2), 132-135.
    • Star, J., & Newton, K. (2009). The nature and development of experts’ strategy flexibility for solving equations. ZDM: International Journal...
    • Star, J., & Rittle-Johnson, B. (2009). It pays to compare: An experimental study on computational estimation. Journal of Experimental...
    • Star, J., & Seifert, C. (2006). The development of flexibility in equation solving. Contemporary Educational Psychology, 31(3), 280-300.
    • Star, J., & Stylianides, G. (2000). Procedural and conceptual knowledge: exploring the gap between knowledge type and knowledge quality....
    • Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in...
    • Wynn, K. (1990). Children’s understanding of counting. Cognition, 36(2), 155-193.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno