Ir al contenido

Documat


Stability to Quaternion Matrix Differential Equations with Singular Coefficients

  • Jiangnan Wang [1] ; JinRong Wang [1] ; Rui Liu [1]
    1. [1] Guizhou University, Gui’an Kechuang Company & Guizhou University Joint Data Shield Laboratory
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 4, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper explores the stability of quaternion matrix differential equations (QMDEs) with singular coefficients, applying integration by parts in the sense of quaternion, the scaling method, and norm estimation for the quaternion matrix exponential function.

      First, the integration by parts formula in the quaternion sense is established in the light of the integration by parts formula over the real field. For equations with vector functions, we deduce the Hyers-Ulam stability of linear QMDEs with singular coefficients and further provide sufficient conditions for exponential stability. Besides, we present the conditions for the Hyers-Ulam stability of the nonlinear QMDEs with singular coefficients. For equations with constant matrices, the Hyers-Ulam stability of QMDEs with singular coefficients is derived in two cases. Finally, theoretical results are illustrated with examples.

  • Referencias bibliográficas
    • 1. Hamilton, W.R.: Elements of Quaternions. Longmans, Green, & Company, London (1866)
    • 2. Hanson, A.J., Ma, H.: Quaternion frame approach to streamline visualization. IEEE Trans. Visual Comput. Graphics 1, 164–174 (1995)
    • 3. Grigor’ev, Y.: Quaternionic functions and their applications in a viscous fluid flow. Complex Anal. Oper. Theory 12, 491–508 (2018)
    • 4. Gibbon, J.D., Holm, D.D., Kerr, R.M., et al.: Quaternions and particle dynamics in the Euler fluid equations. Nonlinearity 19, 1969–1983...
    • 5. Xu, Y., Yu, L., Xu, H., et al.: Vector sparse representation of color image using quaternion matrix analysis. IEEE Trans. Image Process....
    • 6. Zou, C., Kou, K., Wang, Y.: Quaternion collaborative and sparse representation with application to color face recognition. IEEE Trans....
    • 7. Wang, X., Yu, C.: Unit dual quaternion-based feedback linearization tracking problem for attitude and position dynamics. Syst. & Control...
    • 8. Tayebi, A.: Unit quaternion-based output feedback for the attitude tracking problem. IEEE Trans. Autom. Control 53, 1516–1520 (2008)
    • 9. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27, 222–224 (1941)
    • 10. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Tracts in Pure and Applied Mathematics, New York (1960)
    • 11. Chen, D., Feˇckan,M.,Wang, J.: Hyers-Ulam stability for linear quaternion-valued differential equations with constant coefficient. Rocky...
    • 12. Chen, D., Feˇckan, M., Wang, J.: On the stability of linear quaternion-valued differential equations. Qual. Theory Dyn. Syst. 21, 9 (2022)
    • 13. Lv, J., Wang, J., Liu, K.: Hyers-Ulam stability of linear quaternion-valued differential equations with two-sided constant coefficients....
    • 14. Yang, Z., Xu, T., Qi, M.: Ulam-Hyers stability for fractional differential equations in quaternionic analysis. Adv. Appl. Clifford Algebras...
    • 15. Suo, L., Wang, J.: Stability of quaternion-valued impulsive differential equations. Rocky Mt. J. Math. 53, 209–240 (2023)
    • 16. Zou, Y., Feˇckan, M., Wang, J.: Hyers-Ulam stability of linear recurrence with constant coefficients over the quaternion skew yield. Qual....
    • 17. Wang, J., Wang, J., Liu, R.: Hyers-Ulam stability of linear homogeneous quaternion-valued difference equations. Qual. Theory Dyn. Syst....
    • 18. Wang, J., Wang, J., Liu, R.: Hyers-Ulam stability to linear nonhomogeneous quaternion-valued matrix difference equations via complex representation....
    • 19. Kyrchei, I.I.: Quaternion differential matrix equations with singular coefficient matrices. Qual. Theory Dyn. Syst. 23, 216 (2024)
    • 20. Wang, C., Qin, G., Agarwal, R.P.: Quaternionic exponentially dichotomous operators through Sspectral splitting and applications to Cauchy...
    • 21. Walcher, S., Zhang, X.: Polynomial differential equations over the quaternions. J. Differential Equations 282, 566–595 (2021)
    • 22. Fu, T., Kou, K., Wang, J.: Relative controllability of quaternion differential equations with delay. SIAM J. Control. Optim. 61, 2927–2952...
    • 23. Wang, J., Chen, D.: Relative controllability of linear quaternion discrete system with delay. IEEE Trans. Autom. Control (2025). https://doi.org/10.1109/TAC.2025.3578503
    • 24. Wang, C., Wang, J.: Global behaviour of quaternion Riccati rational difference equation. J. Math. Anal. Appl. 518, 126779 (2023)
    • 25. Popa, D., Ra¸sa, I.: On the Hyers-Ulam stability of the linear differential equation. J. Math. Anal. Appl. 381, 530–537 (2011)
    • 26. Hunter, J.J.: Generalized inverses and their application to applied probability problems. Linear Algebra Appl. 45, 157–198 (1982)
    • 27. Kyrchei, I.I.: Determinantal representations of the Drazin inverse over the quaternion skew field with applications to some matrix equations....
    • 28. Kyrchei, I.I.: Linear differential systems over the quaternion skew field. (2018), arXiv: 1812.03397
    • 29. Ngoc, P.H.A., Ha, Q.: On exponential stability of linear non-autonomous functional differential equations of neutral type. Int. J. Control...
    • 30. Wang, J., Feˇckan, M., Tian, Y.: Stability analysis for a general class of non-instantaneous impulsive differential equations. Mediterr....
    • 31. Kou, K., Xia, Y.: Linear quaternion differential equations: basic theory and fundamental results. Stud. Appl. Math. 141, 3–45 (2018)
    • 32. Chen, L.: Inverse matrix and properties of double determinant over quaternion field. Sci. in China (Series A) 34, 528–540 (1991)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno