Ir al contenido

Documat


Quaternion Differential Matrix Equations with Singular Coefficient Matrices

  • Autores: Ivan I. Kyrchei
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01078-w
  • Enlaces
  • Resumen
    • In this paper, the quaternion differential equation, Ax (t)+Bx(t) = f(t), is studied in the case when the quaternion matrix A is singular and f(t) is a quaternion-valued vector function of a real variable t. Its solvability conditions are derived, and the general solution is represented by an explicit formula using generalized inverses of coefficient matrices. The dual (left) quaternion differential equation is explored as well. Also, we consider their partial cases when there is a constant quaternion matrix instead of a quaternion-valued vector function. At that, their general solutions are represented by closed formulas using the Moore-Penrose and Drazin inverses. To illustrate the effectiveness of these results, algorithms, and examples for finding solutions to considered differential quaternion matrix equations are provided. To compute generalized inverse matrices, we use a direct method, namely, their determinantal representations based on the theory of row-column noncommutative determinants previously introduced by the author.

  • Referencias bibliográficas
    • 1. Gupta, S.: Linear quaternion equations with application to spacecraft attitude propagation. IEEE Aerosp. Conf. Proc. 1, 69–76 (1998)
    • 2. Udwadia, F., Schttle, A.: An alternative derivation of the quaternion equations of motion for rigid-body rotational dynamics. J. Appl....
    • 3. Xiao, F.Z., Chen, L.Q.: Fully actuated systems in terms of quaternions for spacecraft attitude control. Acta Astronaut. 209, 1–5 (2023)
    • 4. Handson, A., Hui, H.: Quaternion frame approach to streamline visualization. IEEE Tran. Vis. Comput. Grap. 1, 164–172 (1995)
    • 5. Gibbon, J.D., Holm, D.D., Kerr, R.M., Roulstone, I.: Quaternions and particle dynamics in the Euler fluid equations. Nonlinearity 19, 1969–1983...
    • 6. Roubtsov, V.N., Roulstone, I.: Holomorphic structures in hydrodynamical models of nearly geostrophic flow. Proc. R. Soc. Lond. Ser. A 457,...
    • 7. Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)
    • 8. Leo, S., Ducati, G.: Delay time in quaternionic quantum mechanics. J. Math. Phys. 53(2), 022102 (2012)
    • 9. Peng, T., Lu, J., Tu, Z., Lou, J.: Finite-time stabilization of quaternion-valued neural networks with time delays: an implicit function...
    • 10. Zhu, M., Wang, B., Wu, Y.: Stability and Hopf bifurcation for a quaternion-valued three-neuron neural network with leakage delay and communication...
    • 11. Zhang, Z., Zhang, J., Li, D.: Widely nonlinear quaternion-valued second-order Volterra recursive least squares filter. Signal Process....
    • 12. Leo, S., Ducati, G.: Solving simple quaternionic differential equations. J. Math. Phys. 44(5), 2224–2233 (2003)
    • 13. Campos, J., Mawhin, J.: Periodic solutions of quaternionic-values ordinary differential equations. Ann. Mat. Pura Appl. 185, S109–S127...
    • 14. Zoł¸ ˙ adek, H.: Classification of diffeomorphisms of S4 induced by quaternionic Riccati equations with periodic coefficients. Topol....
    • 15. Wilczynski, P.: Quaternionic valued ordinary differential equations. The Riccati equation. J. Differ. Equ. 247, 2163–2187 (2009)
    • 16. Wilczynski, P.: Planar nonautonomous polynomial equations. II. Coinciding sectors. J. Differ. Equ. 246(7), 2762–2787 (2009)
    • 17. Wilczynski, P.: Quaternionic-valued ordinary differential equations II. Coinciding sectors. J. Differ. Equ. 252, 4503–4528 (2012)
    • 18. Shao, X., Wei, Y., Chu, E..Kw.: Numerical solutions of quaternionic Riccati equations. J. Appl. Math. Comput. 69(3), 2617–2639 (2023)
    • 19. Gasull, A., Llibre, J., Zhang, X.: One-dimensional quaternion homogeneous polynomial differential equations. J. Math. Phys. 50(8), 082705–17...
    • 20. Zhang, X.: Global structure of quaternion polynomial differential equations. Commun. Math. Phys. 303(2), 301–316 (2011)
    • 21. Stra˘sek, R.: Uniform primeness of the Jordan algebra of hermitian quaternion matrices. Linear Algebra Appl. 367, 235–242 (2003)
    • 22. Kyrchei, I.I.: Weighted quaternion core-EP, DMP, MPD, and CMP inverses and their determinantal representations. RACSAM 114, 198 (2020)
    • 23. Chen, L.: Definition of determinant and Cramer solution over the quaternion field. Acta Math. Sin. (N.S.) 7, 171–180 (1991)
    • 24. Cayley, A.: On certain results relating to quaternions. Philos. Mag. 26, 141–145 (1845)
    • 25. Kou, K.I., Liu, W.K., Xia, Y.H.: Linear quaternion differential equations: basic theory and fundamental results (II). arXiv:1602.01660v3,...
    • 26. Kou, K.I., Xia, Y.H.: Linear quaternion differential equations: basic theory and fundamental results. Stud. Appl. Math. 141(1), 3–45 (2018)
    • 27. Kyrchei, I.I.: Linear differential systems over the quaternion skew field. arXiv:1812.03397, (2018)
    • 28. Kyrchei, I.I.: Determinantal representations of the Drazin and W-weighted Drazin inverses over the quaternion skew field with applications....
    • 29. Kou, K.I., Liu, W.K., Xia, Y.H.: Solve the linear quaternion-valued differential equations having multiple eigenvalues. J. Math. Phys....
    • 30. Cai, Z.F., Kou, K.I.: Laplace transform: a new approach in solving linear quaternion differential equations. Math. Methods Appl. Sci....
    • 31. Zhu, J.W., Sun, J.T.: Existence and uniqueness results for quaternion-valued nonlinear impulsive differential systems. J. Syst. Sci. Complex....
    • 32. Suo, L., Feˇckan, M., Wang, J.: Quaternion-valued linear impulsive differential equations. Qual. Theory Dyn. Syst. 20, 33 (2021)
    • 33. Suo, L., Feˇckan, M., Wang, J.: Controllability and observability for linear quaternion-valued impulsive differential equations. Commun....
    • 34. Cheng, D., Kou, K.I., Xia, Y.H.: A unified analysis of linear quaternion dynamic equations on time scales. J. Comput. Anal. Appl. 8(1),...
    • 35. Li, Z., Wang, C., Agarwal, R.P., O’Regan, D.: Commutativity of quaternion-matrix-valued functions and quaternion matrix dynamic equations...
    • 36. Abbassi, R., Jerbi, H., Kchaou, M., Simos, T.E., Mourtas, S.D., Katsikis, V.N.: Towards higher-order zeroing neural networks for calculating...
    • 37. Zeng, R., Song, Q.: Mean-square exponential input-to-state stability for stochastic neutral-type quaternion-valued neural networks via...
    • 38. Xiong, K., Hu, C., Yu, J.: Direct approach-based synchronization of fully quaternion-valued neural networks with inertial term and time-varying...
    • 39. Li, H., Sitian Qin, S.: Hessian-based zeroing neurodynamic approach for quaternion-variable timevarying constrained optimization problems....
    • 40. Yefymenko, N., Kudermetov, R.: Quaternion models of a rigid body rotation motion and their application for spacecraft attitude control....
    • 41. Dai, L.: Singular control systems. In: Lecture Notes in Control and information Sciences, 118. SpringerVerlag, Heidelberg (1989)
    • 42. Dassios, I., Tzounas, G.,Milano, F.: Generalized fractional controller for singular systems of differential equations. J. Comput. Appl....
    • 43. Lewis, F.L.: A survey of linear singular systems. Circuits Syst. Signal Process. 5, 3–36 (1986)
    • 44. Milano, F., Dassios, I.: Primal and dual generalized eigenvalue problems for power systems small-signal stability analysis. IEEE Trans....
    • 45. Tzounas, G., Dassios, I., Murad, M.A.A., Milano, F.: Theory and implementation of fractional order controllers for power system applications....
    • 46. Campbell, S.L., Meyer, C.D., Jr., Rose, N.J.: Application of the Drazin inverse to linear systems of differential equations with singular...
    • 47. Campbell, S.L.: Singular Systems of Differential Equations I. Pitman, Marshfield (1980)
    • 48. Campbell, S.L.: Singular Systems of Differential Equations II. Pitman, Marshfield (1982)
    • 49. Dassios, I., Tzounas, G., Liu, M., Milano, F.: Singular over-determined systems of linear differential equations. Math. Comput. Simul....
    • 50. Lin, D., Chen, X., Yu, G., Li, Z., Xia, Y.: Global exponential synchronization via nonlinear feedback control for delayed inertial memristor-based...
    • 51. Aslaksen, H.: Quaternionic determinants. Math. Intell. 18(3), 57–65 (1996)
    • 52. Cohen, N., De Leo, S.: The quaternionic determinant. Electron. J. Linear Algebra 7, 100–111 (2000)
    • 53. Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)
    • 54. Dieudonne, J.: Les determinants sur un corps non-commutatif. Bull. Soc. Math. France 71, 27–45 (1943)
    • 55. Study, E.: Zur Theorie der linearen Gleichungen. Acta Math. 42, 1–61 (1920)
    • 56. Moore, E.H.: On the determinant of an hermitian matrix of quaternionic elements. Bull. Am. Math. Soc. 28, 161–162 (1922)
    • 57. Dyson, F.J.: Quaternion determinants. Helv. Phys. Acta 45, 289–302 (1972)
    • 58. Kyrchei, I.I.: Cramer’s rule for quaternion systems of linear equations. Fundam. Prikl. Mat. 13(4), 67–94 (2007)
    • 59. Kyrchei, I.I.: Determinantal representations of the W-weighted Drazin inverse over the quaternion skew field. Appl. Math. Comput. 264,...
    • 60. Kyrchei, I.I.: Weighted singular value decomposition and determinantal representations of the quaternion weighted Moore-Penrose inverse....
    • 61. Kyrchei, I.I.: Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations. Linear...
    • 62. Kyrchei, I.I.: Cramer’s Rules for Sylvester-type matrix equations. In: Kyrchei, I.I. (ed.) Hot Topics in Linear Algebra, pp. 45–110. Nova...
    • 63. Kyrchei, I.I., Mosi´c, D., Stanimirovi´c, P.S.: MPD-DMP-solutions to quaternion two-sided restricted matrix equations. Comput. Appl. Math....
    • 64. Song, G.J., Dong, C.Z.: New results on condensed Cramer’s rule for the general solution to some restricted quaternion matrix equations....
    • 65. Song, G.J., Wang, Q.W., Chang, H.X.: Cramer rule for the unique solution of restricted matrix equations over the quaternion skew field....
    • 66. Cai, J., Chen, G.: On determinantal representation for the generalized inverse A(2) T ,S and its applications. Numer. Linear Algebra Appl....
    • 67. Liu, X., Yu, Y., Wang, H.: Determinantal representation of the weighted generalized inverse. Appl. Math. Comput. 208, 556–563 (2009)
    • 68. Sheng, X., Chen, G.: Full-rank representation of generalized inverse A(2) T ,S and its applications. Comput. Math. Appl. 54, 1422–1430...
    • 69. Stanimirovi´c, P.S., Bogdanovi´c, S., Ciri´ ´ c, M.: Adjoint mappings and inverses of matrices. Algebra Colloq. 13(3), 421–432 (2006)
    • 70. Stanimirovi´c, P.S., Djordjevi´c, D.S.: Full-rank and determinantal representation of the Drazin inverse. Linear Algebra Appl. 311, 31–51...
    • 71. Kyrchei, I.I.: Determinantal representations of the Moore-Penrose inverse over the quaternion skew field and corresponding Cramer’s rules....
    • 72. Kyrchei, I.I.: Determinantal representations of the Drazin inverse over the quaternion skew field with applications to some matrix equations....
    • 73. Kyrchei, I.I.: Analogs of the adjoint matrix for generalized inverses and corresponding Cramer rules. Linear Multilinear Algebra 56, 453–469...
    • 74. Kyrchei, I.I.: Explicit formulas for determinantal representations of the Drazin inverse solutions of some matrix and differential matrix...
    • 75. Penrose, R.: A generalized inverse for matrices. Proc. Cambridge Phil. Soc. 51, 406–413 (1955)
    • 76. Wang, Q.W.: A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity. Linear Algebra Appl....
    • 77. Kyrchei, I.I.: The theory of the column and row determinants in a quaternion linear algebra. In: Baswell, A.R. (ed.) Advances in Mathematics...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno