Ir al contenido

Documat


Hyers–Ulam Stability of Linear Homogeneous Quaternion-Valued Difference Equations

  • Jiangnan Wang [1] ; JinRong Wang [1] ; Rui Liu [1]
    1. [1] Guizhou University

      Guizhou University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 3, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider the Hyers–Ulam stability of the first-order linear homogeneous quaternion matrix difference equation. Furthermore, we prove the Hyers-Ulam stability of the second-order linear homogeneous quaternion-valued forward and backward difference equation by converting them into the first-order quaternion matrix difference equation. Finally, some examples are given to support the theoretical results.

  • Referencias bibliográficas
    • 1. Betsch, P., Siebert, R.: Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration. Int....
    • 2. Wang, X., Yu, C.: Unit dual quaternion-based feedback linearization tracking problem for attitude and position dynamics. Syst. Control...
    • 3. Gibbon, J.D., Holm, D.D., Kerr, R.M., et al.: Quaternions and particle dynamics in the Euler fluid equations. Nonlinearity 19, 1969–1983...
    • 4. Hanson, A.J.,Ma, H.: Quaternion frame approach to streamline visualization. IEEE Trans. Vis. Comput. Graph. 1, 164–174 (1995)
    • 5. Kou, K., Xia, Y.: Linear quaternion differential equations: basic theory and fundamental results. Stud. Appl. Math. 141, 3–45 (2018)
    • 6. Kou, K., Liu, W., Xia, Y.: Solve the linear quaternion-valued differential equations having multiple eigenvalues. J. Math. Phys. 60, 023510...
    • 7. Xia, Y., Huang, H., Kou, K.: An algorithm for solving linear nonhomogeneous quaternion-valued differential equations, (2016) arXiv:1602.08713
    • 8. Kyrchei, I. I.: Linear differential systems over the quaternion skew field, (2018) arXiv:1812.03397
    • 9. Lv, J., Kou, K., Wang, J.: Hyers–Ulam stability of linear quaternion-valued differential equations with constant coefficients via fourier...
    • 10. Chen, D., Feˇckan, M., Wang, J.: On the stability of linear quaternion-valued differential equations. Qual. Theory Dyn. Syst. 21, 1–17...
    • 11. Jung, E., Lenhart, S., Protopopescu, V., et al.: Optimal control theory applied to a difference equation model for cardiopulmonary resuscitation....
    • 12. Mazzia, F., Trigiante, D.: The role of difference equations in numerical analysis. Comput. Math. Appl. 28, 209–217 (1994)
    • 13. Quatieri, T.F., Hofstetter, E.M.: Short-time signal representation by nonlinear difference equations. Int. Conf. Acoust. Speech Signal...
    • 14. Chen, D., Feˇckan, M., Wang, J.: Linear quaternion-valued difference equations: representation of solutions, controllability, and observability....
    • 15. Zou, Y., Feˇckan, M., Wang, J.: Hyers-Ulam-Rassias stability of linear recurrence over the quaternion skew yield, Rocky Mountain Journal...
    • 16. Jung, S.M.: Hyers–Ulam stability of the first-order matrix difference equations. Adv. Diff. Equ. 2015, 170 (2015)
    • 17. Baker, A.: Right eigenvalues for quaternionic matrices: a topological approach. Linear Algebra Appl. 286, 303–309 (1999)
    • 18. Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)
    • 19. Chen, L.: Definition of determinant and Cramer solutions over quaternion field. Acta Math. Sinica 7, 171–180 (1991)
    • 20. Chen, L.: Inverse matrix and properties of double determinant over quaternion field. Sci. China Ser. A 34, 528–540 (1991)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno