Ir al contenido

Documat


On the Stability of Linear Quaternion-Valued Differential Equations

  • Chen, Dan [1] ; Fečkan, Michal [2] ; Wang, JinRong [1]
    1. [1] Guizhou University

      Guizhou University

      China

    2. [2] Comenius University

      Comenius University

      Eslovaquia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 1, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper deals with the stability of linear quaternion-valued differential equations. First, we derive an explicit norm estimation like the matrix exponential function in the sense of quaternion-valued. Second, we use this norm to show that the first-order linear equations are asymptotically stable and Hyers–Ulam’s type stable. Further, we show that nth-order equations are also generalized Hyers–Ulam stability. Some examples which can effectively illustrate the theoretical results are presented.

  • Referencias bibliográficas
    • 1. Handson, A.J., Ma, H.: Quaternion frame approach to streamline visualization. IEEE Trans. Vis. Comput. Graph. 1, 164–172 (1995)
    • 2. Adler, S.L.: Quaternionic quantum field theory. Commun. Math. Phys. 104, 611–656 (1986)
    • 3. Leo, S.D., Ducati, G.C., Nishi, C.: Quaternionic potentials in non-relativistic quantum mechanics. J. Phys. A Math. Gen. 35, 5411–5426...
    • 4. Chou, J.C.: Quaternion kinematic and dynamic differential equations. IEEE Trans. Robot. Autom. 8, 53–64 (1992)
    • 5. Chen, X.F., Song, K.Q., Li, Z.: Design and analysis of quaternion-valued neural networks for associative memories. IEEE Trans. Syst. Man...
    • 6. Chen, X.F., Song, K.Q., Li, Z., et al.: Stability analysis of continuous-time and discrete-time quaternionvalued neural networks with linear...
    • 7. Kyrchei, I.: Determinantal representations of the Drazin and W-weighted Drazin inverses over the quaternion skew field with applications....
    • 8. Kyrchei, I.: Linear differential systems over the quaternion skew field, 182 (2018). arXiv preprint arXiv:1812.03397
    • 9. Kou, K.I., Xia, Y.H.: Linear quaternion differential equations: basic theory and fundamental results. Stud. Appl. Math. 141, 3–45 (2018)
    • 10. Xia, Y.H., Huang, H., Kou, K.I.: An algorithm for solving linear nonhomogeneous quaternion-valued differential equations (2016). arXiv...
    • 11. Kou, K.I., Liu, W.K., Xia, Y.H.: Solve the linear quaternion-valued differential equations having multiple eigenvalues. J. Math. Phys....
    • 12. Zhang, F.Z.: Quaternion and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)
    • 13. Xia, Y.H., Kou, K.I., Liu, Y.: Theory and Applications of Quaternion-Valued Differential Equations. Science Press, Beijing. ISBN: 978-7-03-069056-2...
    • 14. Suo, L.P., Feˇckan, M., Wang, J.: Quaternion-valued linear impulsive differential equations. Qual. Theory Dyn. Syst. 20, Art.33 (2021)
    • 15. Jung, S.M.: Hyers-Ulam stability of the first-order matrix differential equations. J. Funct. Spaces. 2015, 614745 (2015)
    • 16. Hyers, D.H., Isac, G., Rassias, T.M.: Stability of Functional Equations in Several Variables. Birkhäuser, Boston (1998)
    • 17. Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, San Diego (1974)
    • 18. Zhang, F., Wei, Y.: Jordan canonical form of a partioned complex matrix and is application to real quatenion matrices. Commun. Algebra...
    • 19. Wang, J., Feˇckan, M., Tian, Y.: Stability analysis for a general class of non-instantaneous impulsive differential equations. Mediterr....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno