Ir al contenido

Documat


The connection between distance learning profiles and achievement emotions in secondary mathematics education

  • Anni Sydänmaanlakka [1] ; Jokke Häsä [2] ; Marja Eliisa Holm [2] ; Markku S. Hannula [1]
    1. [1] University of Helsinki

      University of Helsinki

      Helsinki, Finlandia

    2. [2] Finnish Institute for Health and Welfare, Helsinki
  • Localización: European Journal of Psychology of Education, ISSN-e 1878-5174, ISSN 0256-2928, Vol. 40, Nº 1, 2025
  • Idioma: inglés
  • DOI: 10.1007/s10212-024-00937-z
  • Enlaces
  • Resumen
    • During the COVID-19 pandemic, distance learning became the dominant form of education, utilizing a variety of technological resources to activate students and facilitate independent learning. In this study, latent profile analysis was used to identify different distance learning profiles and analysis of covariance was used to analyze the relationships between identified profiles and students’ (n = 552) achievement emotions in Finnish upper secondary schools (n = 18). The results supported a four-profile model contrasting teaching practices against student involvement: the largest profile (32.97%) was characterized as deactivating–distracted, followed by deactivating–engaged (24.92%) and activating–engaged (24.64%), with the smallest profile (17.57%) being activating–distracted. Here, activation refers to teaching practices with a focus on student participation and school support, whereas distraction reflects students’ involvement in the distance learning environment. Notably, the activating–engaged profile exhibited the most positive achievement emotions, while the deactivating–distracted profile was associated with the most negative emotions. These results highlight the importance of active participation, promoting engagement, and the need for support in distance learning contexts to foster students’ positive achievement emotions.

  • Referencias bibliográficas
    • Adov, L., & Mäeots, M. (2021). What Can We Learn about Science Teachers’ Technology Use during the COVID-19 Pandemic? Education Sciences,...
    • Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika, 60(2), 255–265. https://doi.org/10.1093/biomet/60.2.255
    • Azhari, B., & Fajri, I. (2022). Distance learning during the COVID-19 pandemic: School closure in Indonesia. International Journal of...
    • Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Psychology, 3(2), 77–85. https://doi.org/10.1111/j.2044-8317.1950.tb00285.x
    • Bergdahl, N., & Nouri, J. (2021). Covid-19 and Crisis-Prompted Distance Education in Sweden. Technology, Knowledge and Learning, 26(3),...
    • Bergdahl, N., Nouri, J., Fors, U., & Knutsson, O. (2020). Engagement, disengagement and performance when learning with technologies in...
    • Bernard, R. M., Abrami, P. C., & Lou, Y. (2004). How does distance education compare with classroom instruction?: A meta-analysis of the...
    • Biese, M., Sydänmaanlakka, A. S., Holm, M. E., Häsä, J., & Hannula, M. S. (2024). Differences in mathematics-related achievement emotions...
    • Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika,...
    • Bringula, R., Reguyal, J. J., Tan, D. D., & Ulfa, S. (2021). Mathematics self-concept and challenges of learners in an online learning...
    • Cheng, G., & Chau, J. (2016). Exploring the relationships between learning styles, online participation, learning achievement and course...
    • Clem, A.-L., Hirvonen, R., Aunola, K., & Kiuru, N. (2021). Reciprocal relations between adolescents’ self-concepts of ability and achievement...
    • Costello, A. B., & Osborne, J. (2005). Best practices in exploratory factor analysis: four recommendations for getting the most from your...
    • Crompton, H., Burke, D., Jordan, K., & Wilson, S. W. G. (2021). Learning with technology during emergencies: A systematic review of K-12...
    • Daschmann, E. C., Goetz, T., & Stupnisky, R. H. (2011). Testing the predictors of boredom at school: Development and validation of the...
    • Do, S. L., & Schallert, D. L. (2004). Emotions and Classroom Talk: Toward a Model of the Role of Affect in Students’ Experiences of Classroom...
    • Donham, C., Barron, H. A., Alkhouri, J. S., Changaran Kumarath, M., Alejandro, W., Menke, E., & Kranzfelder, P. (2022). I will teach you...
    • Drijvers, P., Thurm, D., Vandervieren, E., Klinger, M., Moons, F., van der Ree, H., Mol, A., Barzel, B., Doorman, M., Sub Mathematics, E.,...
    • European Commission, Directorate-General for Education, Youth, Sport and Culture. (2021). Koulutuksen seurantakatsaus 2021: Suomi, Publications...
    • Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological...
    • Fernandez, C. J., Ramesh, R., & Manivannan, A. S. R. (2022). Synchronous learning and asynchronous learning during COVID-19 pandemic:...
    • Finnish National Agency for Education. (2019). Lukion opetussuunnitelman perusteet 2019 [National core curriculum for general upper secondary...
    • Finnish National Agency for Education. (2022). Perustietoa oppivelvollisuuden laajentamisesta [Information on the extension of compulsory...
    • Forsblom, L., Peixoto, F., & Mata, L. (2021). Perceived classroom support: Longitudinal effects on students' achievement emotions....
    • Forsblom, L., Pekrun, R., Loderer, K., & Peixoto, F. (2022). Cognitive appraisals, achievement emotions, and students’ math achievement:...
    • Francom, G. M., Lee, S. J., & Pinkney, H. (2021). Technologies, challenges and needs of K-12 teachers in the transition to distance learning...
    • Frenzel, A. C., Pekrun, R., & Goetz, T. (2007). Girls and mathematics — A “hopeless” issue? A control-value approach to gender differences...
    • Gelles, L. A., Lord, S. M., Hoople, G. D., Chen, D. A., & Mejia, J. A. (2020). Compassionate flexibility and self-discipline: student...
    • Goagoses, N., Suovuo, T. B., Winschiers-Theophilus, H., Suero Montero, C., Pope, N., Rötkönen, E., & Sutinen, E. (2024). A systematic...
    • Goetz, T., Frenzel, A. C., Hall, N. C., & Pekrun, R. (2008). Antecedents of academic emotions: Testing the internal/external frame of...
    • Goetz, T., Cronjaeger, H., Frenzel, A. C., Lüdtke, O., & Hall, N. C. (2010). Academic self-concept and emotion relations: Domain specificity...
    • Goman, J., Huusko, M., Isoaho, K., Lehikko, A., Metsämuuronen, J., Rumpu, N., Seppälä, H., Venäläinen, S., & Åkerlund, C. (2021). Impacts...
    • Gómez-Rey, P., Barbera, E., & Fernández-Navarro, F. (2016). Measuring teachers and learners’ perceptions of the quality of their online...
    • Han Tosunoğlu, Ç., Arslanoğlu, S., Balaban, Z., Eleman, Ş, & Kantekin, E. (2022). High school students’ experiences with emergency remote...
    • Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21(1), 33–46. https://doi.org/10.5951/jresematheduc.21.1.0033
    • Henritius, E., Löfström, E., & Hannula, M. S. (2019). University students’ emotions in virtual learning: A review of empirical research...
    • Hollister, B., Nair, P., Hill-Lindsay, S., & Chukoskie, L. (2022). Engagement in Online Learning: Student Attitudes and Behavior During...
    • Johnson, S. K. (2021). Latent profile transition analyses and growth mixture models: A very non-technical guide for researchers in child and...
    • Jones, K., Mallon, S., & Schnitzler, K. (2023). A scoping review of the psychological and emotional impact of the COVID-19 pandemic on...
    • Kaqinari, T., Makarova, E., Audran, J., Döring, A. K., Göbel, K., & Kern, D. (2022). A latent class analysis of university lecturers’...
    • Lauret, D., & Bayram Jacobs, D. (2021). COVID-19 Lockdown Education: The Importance of Structure in a Suddenly Changed Learning Environment....
    • Lazarides, R., & Buchholz, J. (2019). Student-perceived teaching quality: How is it related to different achievement emotions in mathematics...
    • Lidegran, I., Hultqvist, E., Bertilsson, E., & Börjesson, M. (2021). Insecurity, lack of support, and frustration: A sociological analysis...
    • Loderer, K., Pekrun, R., & Lester, J. C. (2020). Beyond cold technology: A systematic review and meta-analysis on emotions in technology-based...
    • Lubke, G., & Muthén, B. O. (2007). Performance of factor mixture models as a function of model size, covariate effects, and class-specific...
    • Mælan, E. N., Gustavsen, A. M., Stranger-Johannessen, E., & Nordahl, T. (2021). Norwegian students’ experiences of homeschooling during...
    • Mamolo, L. A. (2022). Online Learning and Students’ Mathematics Motivation, Self-Efficacy, and Anxiety in the “New Normal”. Education Research...
    • Marsh, H. W., Lüdtke, O., Trautwein, U., & Morin, A. J. S. (2009). Classical latent profile analysis of academic self-concept dimensions:...
    • Martin, A. J., Anderson, J., Bobis, J., Way, J., & Vellar, R. (2012). Switching on and switching off in mathematics: An ecological study...
    • Matsunaga, M. (2010). How to factor-analyze your data right: Do’s, don’ts, and how-to’s. International Journal of Psychological Research,...
    • Ministry of Education and Culture. (2016). Valmiina valintoihin. Ylioppilastutkinnon parempi hyödyntäminen korkeakoulujen opiskelijavalinnoissa....
    • Ministry of Education and Culture. (2021). Koronavirusepidemian vaikutukset toisen asteen koulutukseen. [The effects of the COVID-19 pandemic...
    • National Advisory Board on Research Ethics. (2009). Ethical principles of research in the humanities and social and behavioral sciences and...
    • Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling:...
    • Official Statistics of Finland (OSF). (2024, May 29). Population according to urban-rural classification by age and sex, 2000–2023. Helsinki:...
    • Oliver, R. (1999). Exploring strategies for online teaching and learning. Distance Education, 20(2), 240–254. https://doi.org/10.1080/0158791990200205
    • Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and...
    • Pekrun, R., & Stephens, E. J. (2010). Achievement emotions: A control-value approach. Social and Personality Psychology Compass, 4(4),...
    • Pekrun, R., Goetz, T., & Frenzel, A. (2005). Academic emotions questionnaire-mathematics (AEQ-M) – User’s manual. University of Munich,...
    • Pekrun, R., Marsh, H. W., Suessenbach, F., Frenzel, A. C., & Goetz, T. (2023). School grades and students’ emotions: Longitudinal models...
    • Perkowski, J. (2013). The role of gender in distance learning: A meta-analytic review of gender differences in academic performance and self-efficacy...
    • Plass, J. L., & Kaplan, U. (2016). Emotional design in digital media for learning. In S. Y. Tettegah & M. P. McCreery (Eds.), Emotions,...
    • Pozzoli, T., Gini, G., & Scrimin, S. (2022). Distance learning during the COVID-19 lockdown in Italy: The role of family, school, and...
    • Pregowska, A., Masztalerz, K., Garlińska, M., & Osial, M. (2021). A worldwide journey through distance education—From the post office...
    • R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved...
    • Raccanello, D., Balbontín-Alvarado, R., Bezerra, D. d. S., Burro, R., Cheraghi, M., Dobrowolska, B., Fagbamigbe, A. F., Faris, M. E., França,...
    • Revelle, W. (2022). psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University, Evanston, Illinois....
    • Rodríguez-Muñoz, A., Antino, M., Ruiz-Zorrilla, P., & Ortega, E. (2021). Positive emotions, engagement, and objective academic performance:...
    • Rosenberg, J. M., Beymer, P. N., Anderson, D. J., Van Lissa, C. J., & Schmidt, J. A. (2018). tidyLPA: An R package to easily carry out...
    • Ruef, J. L., Willingham, C. J., & Ahearn, M. R. (2022). Math and equity in the time of COVID: Teaching challenges and successes. International...
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136
    • Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52(3), 333–343. https://doi.org/10.1007/BF02294360
    • Simonson, M. (2019). Definitions, history, and theories of distance education. In M. R. Simonson, S. E. Smaldino, & S. Zvacek (Eds.),...
    • Sinha, P., Calfee, C. S., & Delucchi, K. L. (2020). Practitioner’s guide to latent class analysis: Methodological considerations and common...
    • Stephan, M., Markus, S., & Gläser-Zikuda, M. (2019). Students' achievement emotions and online learning in teacher education. Frontiers...
    • Sydänmaanlakka, A., Häsä, J., Holm, M. E., & Hannula, M. S. (2024). Mathematics-related achievement emotions – Interaction between learning...
    • Tannert, S., & Gröschner, A. (2021). Joy of distance learning? How student self-efficacy and emotions relate to social support and school...
    • Tay, L. Y., Lee, S.-S., & Ramachandran, K. (2021). Implementation of online home-based learning and students’ engagement during the COVID-19...
    • Tuckman, B. W. (2007). The effect of motivational scaffolding on procrastinators’ distance learning outcomes. Computers and Education, 49(2),...
    • Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 5(2), 99–114. https://doi.org/10.2307/3001913
    • Watkins, M. W. (2018). Exploratory factor analysis: A guide to best practice. Journal of Black Psychology, 44(3), 219–246. https://doi.org/10.1177/0095798418771807
    • Weller, B. E., Bowen, N. K., & Faubert, S. J. (2020). Latent class analysis: A guide to best practice. Journal of Black Psychology, 46(4),...
    • Wigfield, A., & Eccles, J. S. (1990). Test anxiety in the school setting. In M. Lewis & S. M. Miller (Eds.), Handbook of Developmental...
    • Wu, P., Li, M., Zhu, F., & Zhong, W. (2022). Empirical investigation of the academic emotions of gaokao applicants during the COVID-19...
    • Xiong, J., Lipsitz, O., Nasri, F., Lui, L. M., Gill, H., Phan, L., ... & McIntyre, R. S. (2020). Impact of COVID-19 pandemic on mental...
    • Yan, L., Whitelock-Wainwright, A., Guan, Q., Wen, G., Gašević, D., & Chen, G. (2021). Students’ experience of online learning during the...
    • Yates, A., Starkey, L., Egerton, B., & Flueggen, F. (2021). High school students’ experience of online learning during Covid-19: The influence...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno