Ir al contenido

Documat


Traveling Waves in a Generalized KdV Equation with Arbitrarily High-Order Nonlinearity and Different Distributed Delays

  • Minzhi Wei [1] ; Yanfei Dai [2] ; Rong Zou [1]
    1. [1] Guangxi University of Finance and Economics

      Guangxi University of Finance and Economics

      China

    2. [2] Zhejiang Normal University

      Zhejiang Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper focuses on the existence of periodic and solitary wave solutions in a generalized KdV equation with an arbitrarily high-order convection term which introduces a time delay in the nonlinearity. For the equation with two different local generic delay kernels, by applying geometric singular perturbation theory and analyzing the perturbation of a hyper-elliptic Hamiltonian system of arbitrary higher degree, we respectively prove the existence of one or two periodic wave solutions with certain wave speed in an open interval, depending on the degree. The existence of solitary wave solutions with certain wave speeds is also established by Melnikov’s method. Our results demonstrate that distributed delays and the degree of nonlinear term can influence the existence and number of traveling wave solutions with particular wave speeds.

  • Referencias bibliográficas
    • 1. Korteweg, D., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary...
    • 2. Ablowitz, M., Clarkson, P.: Solitons. Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)
    • 3. Kano, T., Nishida, T.: A mathematical justification for korteweg-de vries equation and boussinesq equation of water surface waves. Osaka...
    • 4. Tappert, F., Varma, C.: Asymptotic theory of self-trapping of heat pulses in solids. Phys. Rev. Lett. 25, 1108–1111 (1970)
    • 5. Miura, R.: The Korteweg-de Vries equation: a survey of results. SIAM Rev. 18, 412–459 (1976)
    • 6. Rosenau, P., Hyman, J.M.: Compactons: solitons with finite wavelength. Phys. Rev. Lett. 70, 564–567 (1993)
    • 7. Topper, J., Kawahara, T.: Approximate equations for long nonlinear waves on a viscous fluid. J. Phys. Soc. Japan 44, 663–666 (1978)
    • 8. Derks, G., Gils, S.: On the uniqueness of traveling waves in perturbed Korteweg-de Vries equations. Japan J. Indust. Appl. Math. 10, 413–430...
    • 9. Ogawa, T.: Travelling wave solutions to a perturbed Korteweg-de vries equation. Hiroshima Math. J. 24, 401–422 (1994)
    • 10. Fan, X., Tian, L.: The existence of solitary waves of singularly perturbed mKdV-KS equation. Chaos, Solit. Fractals 26, 1111–1118 (2005)
    • 11. Jiang, Y., Tian, Y., Qi, Y.: Solitary wave solutions of a hyperelastic dispersive equation. Math 12, 564 (2024)
    • 12. Zhang, L., Han, M., Zhang, M., et al.: A new type of solitary wave solution of the mKdV equation under singular perturbations. Int. J....
    • 13. Chen, A., Guo, L., Deng, X.: Existence of solitary waves and periodic waves for a perturbed generalized BBM equation. J. Diff. Equat....
    • 14. Zhang, L., Wang, Y., Khalique, C., et al.: New type of solitary wave solution with coexisting crest and trough for a perturbed wave equation....
    • 15. Zhu, K., Wu, Y., Yu, Z., et al.: New solitary wave solutions in a perturbed generalized BBM equation. Nonlinear Dyn. 97, 2413–2423 (2019)
    • 16. Yan, W., Liu, Z., Liang, Y.: Existence of solitary waves and periodic waves to a perturbed generalized KdV equation. Math. Model. Anal....
    • 17. Zhuang, K., Du, Z., Lin, X.: Solitary waves solutions of singularly perturbed higher-order KdV equation via geometric singular perturbation...
    • 18. Chen, A., Zhang, C., Huang, W.: Monotonicity of limit wave speed of traveling wave solutions for a perturbed generalized KdV equation....
    • 19. Chen, A., Zhang, C., Huang, W.: Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Disc. Cont. Dyn. Syst....
    • 20. Ouyang, Z., Huang, W., Wei, M.: Existence and uuniqueness of periodic and solitary waves for a perturbed generalized KdV equation. J....
    • 21. Wen, Z.: On the monotonicity of limit wave speed of the pgKdV equation with nonlinear terms of arbitrary higer degree. J. Non. Math. Phys....
    • 22. Sun, X., Yu, P.: Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms. Disc. Cont....
    • 23. Guo, L., Zhao, Y.: Existence of periodic waves for a perturbed quintic BBM euqation. Disc. Cont. Dyn. Syst. 40, 4689–4703 (2020)
    • 24. Wang, J., Yuen, M., Zhang, L.: Persistence of solitary wave solutions to a singularly perturbed generalized mKdV equation. Appl. Math....
    • 25. Dai, Y., Wei, M., Han, M.: Periodic waves for a perturbed generalized BBM equation. Int. J. Bifurcat. Chaos 33, 2350060 (2023)
    • 26. Dai, Y., Wei, M.: Existence and uniqueness of periodic waves for a perturbed sixtic generalized BBM equation. J. Appl. Anal. Comput. 13,...
    • 27. Zhao, Z.: Solitary waves of the generalized KdV equation with distributed delays. J. Math. Anal. Appl. 344, 32–41 (2008)
    • 28. Xu, Y., Du, Z.: Existence of traveling wave fronts fora generalized KdV-mKdV equation. Math. Model. Anal. 19, 509–523 (2014)
    • 29. Ge, J., Wu, R., Du, Z.: Dynamics of traveling waves for the perturbed generalized KdV equation. Qual. Theor. Dyn. Syst. 20, 42 (2021)
    • 30. Wei, M., He, L.: Existence of periodic wave of a BBM equation with delayed convection and weak diffusion. Nonlinear Dyn. 111, 17413–17425...
    • 31. Wang, J., Zhang, L., Li, J.: New solitary wave solutions of a generalized BBM equation with distributed delays. Nonlinear Dyn. 111, 4631–643...
    • 32. Fan, F., Wei, M.: Traveling waves in a quintic BBM equation under both distributed delay and weak backward diffusion. Physica D 458, 133995...
    • 33. Ge, J., Wu, R.: Traveling waves of delayed Zakharov-Kuznetsov Kuramoto-Sivashinsky equation. Wave Motion 125, 103261 (2024)
    • 34. Zhang, L., Wang, J., Shchepakina, E., et al.: New solitary waves in a convecting fluid. Chaos, Solit. Fractals 183, 114953 (2024)
    • 35. Wang, J., Zhang, L., Huo, X., et al.: Traveling wave solutions for two perturbed nonlinear wave equations with distributed delay. Qual....
    • 36. Wang, K., Chen, S., Du, Z.: Dynamics of travelling waves to KdV-Burgers-Kuramoto equation with Marangoni effect perturbation. Qual. Theor....
    • 37. Li, Y., Heijster, P., Simpson, M.J., Wechselberger, M.: Shock-fronted travelling waves in a reactiondiffusion model with nonlinear forward-backward-forward...
    • 38. Liu, C., Chen, G., Sun, Z.: New criteria for the monotonicity of the ratio of two Abelian integrals. J. Math. Anal. Appl. 465, 220–234...
    • 39. Qi, Y., Tian, Yu., Jiang, Y.: Existence of traveling wave solutions for the perturbed modefied Gardner equation. Qual. Theor. Dyn. Syst....
    • 40. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equat. 31, 53–98 (1979)
    • 41. Jones, C.: (1994) Geometric singular perturbation theory, in: R. Johnson (Ed.), Dynamical systems. Lecture Notes Math. 1609: 45-118
    • 42. Christopher, J.: Geometric singular perturbation theory. Lecture Notes Math, Springer 1609, 45–118 (1994)
    • 43. Karlin, S., Studden, W.: Tchebycheff systems: with applications in analysis and statistics. Interscience Publishers, New York, Pure Appl....
    • 44. Li, C., Zhang, Z.: A criterion for determining the monotonicity of the ratio of two Abelian integrals. J. Differ. Equat. 124, 407–424...
    • 45. Liu, C., Xiao, D.: The monotonicity of the ratio of two abelian integrals. Trans. Amer. Math. Soc. 365, 5525–5544 (2013)
    • 46. Han, M., Yu, P.: Normal Forms. Melnikov Functions and Bifurcations of Limit Cycles. Springer, New York (2012)
    • 47. Han, M.: Bifurcation Theory of Limit Cycles. Science press, Beijing (2013)
    • 48. Han, M., Yang, J.: The maximum number of zeros of functions with parameters and application to differential equations. J. Nonl. Mod. Anal....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno