Ir al contenido

Documat


Dynamics of Travelling Waves to KdV–Burgers–Kuramoto Equation with Marangoni Effect Perturbation

  • Ke Wang [1] ; Shuting Chen [2] ; Zengji Du [1]
    1. [1] Jiangsu Normal University

      Jiangsu Normal University

      China

    2. [2] Southeast University

      Southeast University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper aims to establish the existence of travelling waves for a generalized KdV–Burgers–Kuramoto equation via utilising geometric singular perturbation theory. Firstly, we explore the existence results of orbits for the equation without delay and perturbation by employing Argument Principle. Secondly, the existence of travelling waves for the equation with two types of special delay convolution kernels are proved with the aid of combining the geometric singular perturbation theory, invariant manifold theory and Fredholm orthogonality theorem. Finally, asymptotic behaviors of traveling waves are given with the method of the asymptotic theory.

  • Referencias bibliográficas
    • 1. Alimirzaluo, E., Nadjafikhah, M.: Some exact solutions of KdV–Burgers–Kuramoto equation. J. Phys. Commun. 3(3), 035025 (2019)
    • 2. Benney, D.J.: Long waves on liquid films. J. Math. Phys. 45, 150–155 (1966)
    • 3. Britton, N.F.: Aggregation and the competitive exclusion principle. J. Theoret. Biol. 136, 57–66 (1989)
    • 4. Britton, N.F.: Spatial structures and periodic travelling waves in an integro-differential reactiondiffusion population model. SIAM J....
    • 5. Cerpa, E., Montoya, C., Zhang, B.: Local exact controllability to the trajectories of the Korteweg-de Vries–Burgers equation on a bounded...
    • 6. Chang, C., Chen, Y., Hong, J.M., et al.: Existence and instability of traveling pulses of Keller–Segel system with nonlinear chemical gradients...
    • 7. Chen, S., Du, Z., Liu, J., et al.: The dynamic properties of a generalized Kawahara equation with Kuramoto–Sivashinsky perturbation. Discrete...
    • 8. Du, Z., Li, J.: Geometric singular perturbation analysis to Camassa–Holm Kuramoto–Sivashinsky equation. J. Differ. Equ. 306, 418–438 (2022)
    • 9. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa–Holm equation via a geometric approach. J. Funct. Anal....
    • 10. Du, Z., Lin, X., Yu, S.: Solitary wave and periodic wave for a generalized (2+1)-dimensional Nizhnik– Novikov–Veselov equation with...
    • 11. Du, Z., Liu, J., Ren, Y.: Traveling pulse solutions of a generalized Keller–Segel system with small cell diffusion via a geometric approach....
    • 12. Du, Z., Qiao, Q.: The dynamics of traveling waves for a nonlinear Belousov–Zhabotinskii system. J. Differ. Equ. 269, 7214–7230 (2020)
    • 13. Escauriaza, L., Kenig, C.E., Ponce, G., et al.: On uniqueness properties of solutions of the k-generalized KdV equations. J. Funct. Anal....
    • 14. Feng, Z., Meng, Q.: Burgers–Korteweg-de Vries equation and its traveling solitary waves. Sci. China Ser. A 50, 412–422 (2007)
    • 15. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)
    • 16. Feudel, F., Steudel, H.: Nonexistence of prolongation structure for the Korteweg-de Vries–Burgers equation. Phys. Lett. A 107, 5–8 (1985)
    • 17. Garcia-Ybarra, P.L., Castillo, J.L., Velarde, M.G.: Bénard–Marangoni convection with a deformable interface and poorly conducting boundaries....
    • 18. Geyera, A., Villadelpratb, J.: On the wave length of smooth periodic traveling waves of the CamassaHolm equation. J. Differ. Equ. 259,...
    • 19. Guo, L., Zhao, Y.: Existence of periodic waves for a perturbed quintic BBM equation. Discrete Contin. Dyn. Syst. 40, 4689–4703 (2020)
    • 20. Hyman, J.M., Nicolaenko, B.: The Kuramoto-Sivashinsky equation: a bridge between PDEs and dynamical systems. Phys. D 18, 113–126 (1986)
    • 21. Johnsona, E.R., Pelinovsky, D.E.: Orbital stability of periodic waves in the class of reduced Ostrovsky equations. J. Differ. Equ. 261,...
    • 22. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Johnson, R. (ed.) Dynamical Systems. Lecture Notes in Mathematics, vol. 1609....
    • 23. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction...
    • 24. Komornik, V., Pignotti, C.: Well-posedness and exponential decay estimates for a Korteweg-de Vries– Burgers equation with time-delay....
    • 25. Kuramoto, Y., Tsuzuki, T.: Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor....
    • 26. Liu, J., Guan, J., Feng, Z.: Hopf bifurcation analysis of KdV–Burgers–Kuramoto chaotic system with distributed delay feedback. Int. J....
    • 27. Mansour, M.B.A.: Traveling waves for a dissipative modified KdV equation. J. Egypt. Math. Soc. 20, 134–138 (2012)
    • 28. Ogawa, T.: Travelling wave solutions to a perturbed Korteweg-de Vries equation. Hiroshima Math. J. 24, 401–422 (1994)
    • 29. Sayed, S.M., Elhamahmy, O.O., Gharib, G.M.: Travelling wave solutions for the KdV–Burgers– Kuramoto and nonlinear Schrodinger equations...
    • 30. Shargatov, V.A., Chugainova, A.P.: Stability analysis of traveling wave solutions of a generalized Korteweg-de Vries–Burgers equation...
    • 31. Shen, J., Zhang, X.: Travelling pulses in a coupled FitzHugh–Nagumo equation. Physica D 418, 132848 (2021)
    • 32. Sivashinsky, G.I.: Large cells in nonlinear Marangoni convection. Phys. D 4, 227–235 (1982)
    • 33. Sun, X., Yu, P.: Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation. Discrete Contin....
    • 34. Tao, T.: Scattering for the quartic generalised Korteweg-de Vries equation. J. Differ. Equ. 232, 623–651 (2007)
    • 35. Tchaho, C.T.D., Omanda, H.M., Mbourou, G.N.T., et al.: Multi-form solitary wave solutions of the KdV–Burgers–Kuramoto equation. J. Phys....
    • 36. Velarde, M.G.: Physicochemical Hydrodynamics: Interfacial Phenomena. Plenum, New York (1987)
    • 37. Wang, G.: Symmetry analysis, analytical solutions and conservation laws of a generalized KdV– Burgers–Kuramoto equation and its fractional...
    • 38. Yang, J.: A normal form for Hamiltonian–Hopf bifurcations in nonlinear Schrodinger equations with ¨ general external potentials. SIAM...
    • 39. Zhou, Y., Liu, Q.: Reduction and bifurcation of traveling waves of the KdV–Burgers–Kuramoto equation. Discrete Contin. Dyn. Syst. Ser....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno