Ir al contenido

Documat


Existence of Traveling Wave Solutions for the Perturbed Modefied Gardner Equation

  • Yao Qi [1] ; Yu Tian [1] ; Yuheng Jiang [1]
    1. [1] Beijing University of Posts and Telecommunications

      Beijing University of Posts and Telecommunications

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The modified Gardner equation is widely used to describe the supernonlinear proliferation of ion-acoustic waves and quantum electron-positron ion magneto plasmas. This paper focuses on the investigation of the modified Gardner equation with Kuramoto-Sivashinsky perturbation. The existence results of nonlinear and supernonlinear ion-acoustic solitary and periodic waves are established by employing the geometric singular perturbation theory, invariant manifold theory, and bifurcation theory. The supernonlinear solitary wave is a new class of solitary waves, which was proposed by Dubinov and Kolotkov [12]. In this work, the existence of the novel type of ion-acoustic solitary and periodic waves in the perturbed modified Gardner equation has been proven for the first time. Through rigorous mathematical analysis and numerical simulations, we further substantiate the validity of our proposed methods and model. Overall, this study enhances the understanding of the nonlinear and supernonlinear dynamics of ion-acoustic waves in the modified Gardner equation, while also providing a solid foundation for future investigations and applications in plasma physics and related disciplines.

  • Referencias bibliográficas
    • 1. Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers, Birkhäuser Boston, (2005)
    • 2. Gintautas, V., Hubler, A.W.: Resonant forcing of nonlinear systems of differential equations. Chaos 18, 033118 (2008)
    • 3. Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Springer, Berlin, Heidelberg (2010)
    • 4. Seadawy, A.R.: Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl....
    • 5. Seadawy, A.R., Iqbal, M., Lu, D.: Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary...
    • 6. Rizvi, S.T.R., Seadawy, A.R., Ahmed, S., Younis, M., Ali, K.: Study of multiple lump and rogue waves to the generalized unstable space...
    • 7. Roshid, H.-O., Roshid, M., Abdeljabbar, A., Begum, M., Basher, H.: Abundant dynamical solitary waves through Kelvin-Voigt fluid via the...
    • 8. Ullah, M.S., Baleanu, D., Ali, M.Z., Roshid, H.-O.: Novel dynamics of the Zoomeron model via different analytical methods. Chaos Solitons...
    • 9. Alshammari, F.S., Roshid, H.-O., Asif, M., Hoque, M.F., Aldurayhim, A.: Bifurcation analysis on ion sound and Langmuir solitary waves solutions...
    • 10. Hossain, M.M., Abdeljabbar, A., Roshid, H.-O., Roshid, M.M., Sheikh, A.N.: Abundant bounded and unbounded solitary, periodic, rogue-type...
    • 11. Busse, F.H.: Non-linear properties of thermal convection. Rep. Progr. Phys. 41, 1929–1967 (1978)
    • 12. Dubinov, A.E., Kolotkov, DYu.: Ion-acoustic supersolitons in plasma. Plasma Phys. Rep. 38, 909–912 (2012)
    • 13. Derks, G., Gils, S.: On the uniqueness of traveling waves in perturbed Korteweg-de Vries equations, Japan J. Indust. Appl. Math. 10, 413–430...
    • 14. Ogawa, T.: Traveling wave solutions to a perturbed Korteweg-de Vries equation. Hiroshima Math. J. 24, 401–422 (1994)
    • 15. Topper, J., Kawahara, T.: Approximate equations for long nonlinear waves on a viscous fluid. J. Phys. Soc. Japan 44, 663–666 (1978)
    • 16. Li, W.-T., Lin, G., Ruan, S.: Existence of travelling wave solutions in delayed reactiondiffusion systems with applications to diffusion-competition...
    • 17. Ma, S.: Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J. Differ. Equ. 171, 294–314 (2001)
    • 18. Zhang, T., Wang, W., Wang, K.: Minimal wave speed for a class of non-cooperative diffusionreaction system. J. Differ. Equ. 260, 2763–2791...
    • 19. Gardner, R., Smoller, J.: The existence of periodic travelling waves for singularly perturbed predatorprey equations via the Conley index....
    • 20. Huang, W.: A geometric approach in the study of traveling waves for some classes of nonmonotone reaction-diffusion systems. J. Differ....
    • 21. Wu, J., Zou, X.: Traveling wave fronts of reaction-diffusion systems with delay. J. Dynam. Differ. Equ. 13, 651–687 (2001)
    • 22. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)
    • 23. Broer, H.W., Kaper, T.J., Krupa, M.: Geometric desingularization of a cusp singularity in slow-fast systems with applications to Zeeman’s...
    • 24. Jardón-Kojakhmetov, H., Broer, H. W.: Polynomial normal forms of constrained differential equations with three parameters, J. Differential...
    • 25. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points - fold and canard points in two dimensions....
    • 26. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174, 312–368 (2001)
    • 27. Lu, N., Zeng, C.: Normally elliptic singular perturbations and persistence of homoclinic orbits. J. Differ. Equ. 250, 4124–4176 (2011)
    • 28. Schecter, S.: Exchange lemmas 2: general exchange lemma. J. Differ. Equ. 245, 411–441 (2007)
    • 29. Jones, C.K.R.T.: Geometrical Singular Perturbation Theory. Lecture Notes in Mathematics, pp. 44– 118. Springer, New York (1995)
    • 30. Robinson, C.: Sustained resonance for a nonlinear system with slowly varying coefficients. SIAM J. Math. Anal. 14, 847–860 (2006)
    • 31. Chen, A., Guo, L., Huang, W.: Existence of kink waves and periodic waves for a perturbed defocusing mKdV equation. Qual. Theory Dyn. Syst....
    • 32. Chen, A., Zhang, C., Huang, W.: Monotonicity of limit wave speed of traveling wave solutions for a perturbed generalized KdV equation....
    • 33. Li, H., Sun, H., Zhu, W.: Solitary waves and periodic waves in a perturbed KdV equation. Qual. Theory Dyn. Syst. 19, 83 (2020)
    • 34. Cheng, F., Li, J.: Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete Contin. Dyn....
    • 35. Xu, G., Zhang, Y.: On the existence of solitary wave solutions for perturbed Degasperis-Procesi equation. Qual. Theory Dyn. Syst. 20,...
    • 36. Du, Z., Li, J.: Geometric singular perturbation analysis to Camassa-Holm Kuramoto-Sivashinsky equation. J. Differ. Equ. 306, 418–438 (2022)
    • 37. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach. J. Funct....
    • 38. Qiu, H., Zhong, L., Shen, J.: Traveling waves in a generalized Camassa-Holm equation involving dual-power law nonlinearities. Commun....
    • 39. Chen, A., Guo, L., Deng, X.: Existence of solitary waves and periodic waves for a perturbed generalized BBM equation. J. Differ. Equ....
    • 40. Guo, L., Zhao, Y.: Existence of periodic waves for a perturbed quintic BBM equation. Discrete Contin. Dyn. Syst. 40, 4689–4703 (2020)
    • 41. Sun, X., Yu, P.: Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms. Discrete Contin....
    • 42. Du, Z., Qiao, Q.: The dynamics of traveling waves for a nonlinear Belousov-Zhabotinskii system. J. Differ. Equ. 269, 7214–7230 (2020)
    • 43. Du, Z., Liu, J., Ren, Y.: Traveling pulse solutions of a generalized Keller-Segel system with small cell diffusion via a geometric approach....
    • 44. Tang, Y., Xu, W., Shen, J., Gao, L.: Persistence of solitary wave solutions of singularly perturbed Gardner equation. Chaos Solitons Fractals...
    • 45. Wen, Z.: On existence of kink and antikink wave solutions of singularly perturbed Gardner equation. Math. Methods Appl. Sci. 43, 4422–4427...
    • 46. Betchewe, G., Victor, K.K., Thomas, B.B., Crepin, K.T.: New solutions of the Gardner equation: Analytical and numerical analysis of its...
    • 47. Fu, Z., Liu, S., Liu, S.: New kinds of solutions to Gardner equation. Chaos Solitons Fractals 20, 301–309 (2004)
    • 48. Wang, K.: Traveling wave solutions of the Gardner equation in dusty plasmas. Results Phys. 33, 105207 (2022)
    • 49. Olivier, C.P., Verheest, F., Hereman, W.A.: Collision properties of overtaking supersolitons with small amplitudes. Phys. Plasmas 25,...
    • 50. Tamang, J., Saha, A.: Bifurcations of small-amplitude supernonlinear waves of the mKdV and modified Gardner equations in a three-component...
    • 51. Jhangeer, A., Hussain, A., Junaid-U-Rehman, M., Baleanu, D., Riaz, M.B.: Quasi-periodic, chaotic and traveling wave structures of modified...
    • 52. Szmolyan, P.: Transversal heteroclinic and homoclinic orbits in singular perturbation problems. J. Differ. Equ. 92, 252–281 (1991)
    • 53. Carr, J.: Applications of the Center Manifold Theory. Springer-Verlag, New York (1981)
    • 54. Fan, S.: A new extracting formula and a new distinguished means on the one valuable cubic equation. Natural Sci. J. Hainan Teach. College...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno