Ir al contenido

Documat


Differentiability of Semi-Flow for Impulsive Evolution Equation with State-Dependent Delay

  • Weifeng Ma [1] ; Yongxiang Li [2]
    1. [1] Shaanxi Xueqian Normal University

      Shaanxi Xueqian Normal University

      China

    2. [2] Northwest Normal University

      Northwest Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01134-5
  • Enlaces
  • Resumen
    • In this paper, we study the impulsive evolution equation with state-dependent delay by the theory of operator semigroup in Banach spaces. Under conditions that both nonlinearity and impulsive functions are Lipschitz continuous, we obtain the existence and uniqueness results of mild solution. Furthermore, we prove the differentiability of a semi-flow defined by a continuously differentiable solution operator under the appropriate condition.

  • Referencias bibliográficas
    • 1. Akhmet, M., Alzabut, J., Zafer, A.: Perron’s theorem for linear impulsive differential equations with distributed delay. J. Comput. Appl....
    • 2. Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York (2006)
    • 3. Chen, P., Ma, W.: The solution manifolds of impulsive differential equations. Appl. Math. Lett. 116, 107000 (2021)
    • 4. Diekmann, O., Van Gils, S., Verduyn Lunel, S., Walther, H.: Delay Equations: Functional. SpringerVerlag, New York (1995)
    • 5. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Sooppy Nisar, K.: Results on approximate controllability of neutral integro-differential...
    • 6. Fitzgibbon, W.: Semilinear functional differential equations in Banach spaces. J. Differ. Equ. 29(1), 1–14 (1978)
    • 7. Hartung, F., Krisztin, T., Walther, H., Wu, J.: Functional differential equations with state-dependent delay. In: Handbook of Differential...
    • 8. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag, Berlin (1981)
    • 9. Hale, J.: Theory of Functional Differential Equations. Springer, Berlin (1997)
    • 10. Krisztin, T.: A local unstable manifold for differential equations with state-dependent delay. Discrete Contin. Dyn. Syst. 9(4), 993–1028...
    • 11. Krisztin, T.: C1-smoothness of center manifolds for differential equations with state-dependent delay. Fields Inst. Commun. 48, 213–226...
    • 12. Krisztin, T., Walther, H., Wu, J.: Shap, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback....
    • 13. Krisztin, T., Rezounenko, A.: Parabolic partial differential equations with discrete state-dependent delay: classical solution and solution...
    • 14. Krisztin, T., Wu, J.: Monotone semiflows generated by neutral equations with different delays in neutral and retarded parts. Acta. Math....
    • 15. Krisztin, T., Arino, O.: The two-dimensional attractor of a differential equation with state-dependent delay. J. Dynam. Differ. Equ. 13(3),...
    • 16. Louini, M., Hbid, M., Arino, O.: Semigroup properties and the Crandall Liggett approximation for a class of differential equations with...
    • 17. Lakshmikantham, V., Bainov, D., Simeonov, P.: Theory of Impuslive Differential Equations. World Scientific, Singapore (1989)
    • 18. Lv, Y., Yuzn, R., Pei, Y.: Smoothness of semiflows for parabolic partial differential equations with state-dependent delay. J. Differ....
    • 19. Lv, Y., Pei, Y., Yuan, R.: Principle of linearized stability and instability for parabolic differential equations with state-dependent...
    • 20. Ma, Y., Kavitha, K., Albalawi, W., Shukla, A., Nisar, K.S., Vijayakumar, V.: An analysis on the approximate controllability of Hilfer...
    • 21. Pan, L.: Stable invariant manifolds with impulses and growth rates. Adv. Differ. Equ. 2015(1), 1–16 (2015)
    • 22. Poisson, S.: Sur les equation aux differential malees. J. eL’Ecole Poly-tech. 6, 126–147 (1806)
    • 23. Pazy, A.: Semigroups of Linear Operators and Applications to Paratial Differential Equations. SpringerVerlag, New York (1983)
    • 24. Qesmi, R., Walther, H.: Center-stable manifolds for differential equations with state-dependent delay. Discret. Contin. Dyn. Syst. 23(3),...
    • 25. Ruess, W.: Existence of solutions to partial functional-differential equations with delay. Lecture Notes Pure Appl. Math. 178, 259–288...
    • 26. Rezounenko, A., Zagalak, P.: Non-local PDEs with state-dependent delays: well-posedness in a metric space, discrete state-dependent delay....
    • 27. Rezapour, S., Henríquez, H.R., Vijayakumar, V., Nisar, K.S., Shukla, A.: A note on existence of mild solutions for second-order neutral...
    • 28. Saker, S., Alzabut, J.: Existence of periodic solutions, global attractivity and oscillation of impulsive delay population model. Nonlinear...
    • 29. Saker, S., Alzabut, J.: On the impulsive delay hematopoiesis model with periodic coefficients. Rocky Mountain J. Math. 39(5), 1657–1688...
    • 30. Stamov, G., Alzabut, J., Atanasov, P., Stamov, A.: Almost periodic solutions for an impulsive delay model of price fluctuations in commodity...
    • 31. Stumpf, E.: On a differential equation with state-dependent delay: a global center-unstable manifold bordered by a periodic orbit. Dissertation...
    • 32. Shukla, A., Arora, U., Sukavanam, N.: Approximate controllability of retarded semilinear stochastic system with non local conditions....
    • 33. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional control systems of order α ∈ (1, 2] in Hilbert...
    • 34. Shukla, A., Sukavanam, N., Pandey, D.N.: Complete controllability of semi-linear stochastic system with delay. Rend. Circ. Mat. Palermo...
    • 35. Travis, C., Webb, G.: Existence and stability for partial functional differential equations. Trans. Amer. Math. Soc. 200, 395–418 (1974)
    • 36. Walther, H.: Differentiable semiflows for differential equations with state-dependent delays. Univ. Iagel. Acta Math. 41, 57–66 (2003)
    • 37. Walther, H.: The solution manifold and C1-smoothness for differential equations with state-dependent delay. J. Differ. Equ. 195(1), 46–65...
    • 38. Walther, H.: Smoothness properties of semiflow for differential equations with state-dependent delays. J. Math. Sci. 124(4), 5193–5207...
    • 39. Wu, J.: Theory and Applications of Partial Function-Differential Equations. Springer-Verlag, New York (1996)
    • 40. Tao, Y.: Impulsive Control Theory. Lecture notes in control and information sciences, Springer-Verlag, Berlin (2001)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno