Ir al contenido

Documat


Proof of a conjectured Möbius inversion formula for Grothendieck polynomials

  • Oliver Pechenik [1] ; Matthew Satriano [1]
    1. [1] University of Waterloo

      University of Waterloo

      Canadá

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00973-z
  • Enlaces
  • Resumen
    • Schubert polynomials Ϭw are polynomial representatives for cohomology classes of Schubert varieties in a complete flag variety, while Grothendieck polynomials Ϭw are analogous representatives for the K-theory classes of the structure sheaves of Schubert varieties. In the special case that Ϭw is a multiplicity-free sum of monomials, K. Mészáros, L. Setiabrata, and A. St. Dizier conjectured that Ϭw can be easily computed from Sw via Möbius inversion on a certain poset. We prove this conjecture. Our approach is to realize monomials as Chow classes on a product of projective spaces and invoke a result of M. Brion on flat degenerations of such classes.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno