Ir al contenido

Documat


Castelnuovo–Mumford regularity of matrix Schubert varieties

  • Oliver Pechenik [1] ; David E Speyer [2] ; Anna Weigandt [3]
    1. [1] University of Waterloo

      University of Waterloo

      Canadá

    2. [2] University of Michigan–Ann Arbor

      University of Michigan–Ann Arbor

      City of Ann Arbor, Estados Unidos

    3. [3] University of Minnesota

      University of Minnesota

      City of Minneapolis, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-44
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00959-x
  • Enlaces
  • Resumen
    • Matrix Schubert varieties are affine varieties arising in the Schubert calculus of the complete flag variety. We give a formula for the Castelnuovo–Mumford regularity of matrix Schubert varieties, answering a question of Jenna Rajchgot. We follow her proposed strategy of studying the highest-degree homogeneous parts of Grothendieck polynomials, which we call Castelnuovo–Mumford polynomials. In addition to the regularity formula, we obtain formulas for the degrees of all Castelnuovo–Mumford polynomials and for their leading terms, as well as a complete description of when two Castelnuovo–Mumford polynomials agree up to scalar multiple. The degree of the Grothendieck polynomial is a new permutation statistic which we call the Rajchgot index; we develop the properties of Rajchgot index and relate it to major index and to weak order

  • Referencias bibliográficas
    • Almousa, A., Grate, S., Huang, D., Klein, P., LaClair, A., Luo, Y., McDonough, J.: The MatrixSchubert package for Macaulay2, preprint (2023),...
    • Bergeron, N., Billey, S.: RC-graphs and Schubert polynomials. Experiment. Math. 2(4), 257–269 (1993).
    • Berge, C.: Principles of combinatorics. Translated from the French. Mathematics in Science and Engineering, Vol. 72, Academic Press, New York-London...
    • Bruns, W., Herzog, J.: Cohen-Macaulay rings. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1993).
    • Benedetti, B., Varbaro, M.: On the dual graphs of Cohen-Macaulay algebras. Int. Math. Res. Not. IMRN 2015(17), 8085–8115 (2015).
    • Claesson, A.: Generalized pattern avoidance. European J. Combin. 22(7), 961–971 (2001).
    • Escobar, L., Mészáros, K.: Toric matrix Schubert varieties and their polytopes. Proc. Amer. Math. Soc. 144(12), 5081–5096 (2016).
    • Fomin, S., Kirillov, A.N.: Grothendieck polynomials and the Yang-Baxter equation. In: Formal power series and algebraic combinatorics/Séries...
    • Fulton, W., Lascoux, A.: A Pieri formula in the Grothendieck ring of a flag bundle. Duke Math. J. 76(3), 711–729 (1994).
    • Fink, A., Rajchgot, J., Sullivant, S.: Matrix Schubert varieties and Gaussian conditional independence models. J. Algebraic Combin. 44(4),...
    • Fulton, W.: Flags, Schubert polynomials, degeneracy loci, and determinantal formulas. Duke Math. J. 65(3), 381–420 (1992).
    • Hammett, A., Pittel, B.: How often are two permutations comparable? Trans. Amer. Math. Soc. 360(9), 4541–4568 (2008).
    • Hamaker, Z., Pechenik, O., Speyer, D.E., Weigandt, A.: Derivatives of Schubert polynomials and proof of a determinant conjecture of Stanley....
    • Hamaker, Z., Pechenik, O., Weigandt, A.: Gröbner geometry of Schubert polynomials through ice. Adv. Math. 398, 108228 (2022).
    • Hsiao, J.-C.: On the F-rationality and cohomological properties of matrix Schubert varieties. Illinois J. Math. 57(1), 1–15 (2013).
    • Knutson, A., Miller, E.: Gröbner geometry of Schubert polynomials. Ann. of Math. (2) 161(3), 1245–1318 (2005).
    • Knutson, A., Miller, E., Yong, A.: Gröbner geometry of vertex decompositions and of flagged tableaux. J. Reine Angew. Math. 630, 1–31 (2009).
    • Lenart, C., Robinson, S., Sottile, F.: Grothendieck polynomials via permutation patterns and chains in the Bruhat order. Amer. J. Math. 128(4),...
    • Lascoux, A., Schützenberger, M.-P.: Polynômes de Schubert. C. R. Acad. Sci. Paris Sér. I Math. 294(13), 447–450 (1982).
    • Lascoux, A., Schützenberger, M.-P.: Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux....
    • Manivel, L.: Symmetric functions, Schubert polynomials and degeneracy loci. SMF/AMS Texts and Monographs, vol. 6. American Mathematical Society,...
    • Petersen, T.K.: A two-sided analogue of the Coxeter complex. Electron. J. Combin. 25(4), 28 (2018).
    • Ramanathan, A.: Schubert varieties are arithmetically Cohen-Macaulay. Invent. Math. 80(2), 283–294 (1985).
    • Rajchgot, J., Ren, Y., Robichaux, C., St. Dizier, A., Weigandt, A.: Degrees of symmetric Grothendieck polynomials and Castelnuovo-Mumford...
    • Rajchgot, J., Robichaux, C., Weigandt, A.: Castelnuovo-Mumford regularity of ladder determinantal varieties and patches of Grassmannian Schubert...
    • Sloane, N.J.A.: The on-line encyclopedia of integer sequences. Available at: http://oeis.org
    • Weigandt, A.: Bumpless pipe dreams and alternating sign matrices. J. Combin. Theory Ser. A 182, 105470 (2021).
    • Weigandt, A., Yong, A.: The prism tableau model for Schubert polynomials. J. Combin. Theory Ser. A 154, 551–582 (2018).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno