Ir al contenido

Documat


Approximate Controllability of Nonlocal Fractional Control System

  • Kamla Kant Mishra [1] ; Shruti Dubey [1]
    1. [1] Indian Institute of Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01091-z
  • Enlaces
  • Resumen
    • In this paper, we aim to find a mild solution for a delay control system described by nonlinear fractional evolution differential equations in Banach spaces while being subjected to nonlocal conditions. Further, we explore the sufficient conditions for the approximate controllability of the nonlinear fractional control system, assuming that the associated linear system is approximately controllable. We provide some applications at the end to demonstrate our proposed results.

  • Referencias bibliográficas
    • Alam, M.M., Dubey, S., Baleanu, D.: New interpolation spaces and strict Hölder regularity for fractional abstract Cauchy problem. Bound. Value...
    • Amann, H.: Parabolic evolution equations and nonlinear boundary conditions. J. Differ. Equ. 72(2), 201–269 (1988) Article MathSciNet Google...
    • Chang, Y.K., Pereira, A., Ponce, R.: Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent...
    • Chen, P., Zhang, X., Li, Y.: Study on fractional non-autonomous evolution equations with delay. Comput. Math. Appl. 73(5), 794–803 (2017) Article...
    • Chen, P., Zhang, X., Li, Y.: Approximate controllability of non-autonomous evolution system with nonlocal conditions. J. Dyn. Control Syst....
    • Debbouche, A., Nieto, J.J.: Relaxation in controlled systems described by fractional integro-differential equations with nonlocal control...
    • Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S.: A discussion on the approximate controllability of Hilfer fractional neutral...
    • Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S., Shukla, A.: A note on the approximate controllability of Sobolev type fractional...
    • Du, F., Lu, J.G.: Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities. Appl. Math. Comput....
    • Dubey, S., Sharma, M.: Solutions to fractional functional differential equations with nonlocal conditions. Fract. Calc. Appl. Anal. 17(3),...
    • Fan, Z., Dong, Q., Li, G.: Approximate controllability for semilinear composite fractional relaxation equations. Fract. Calc. Appl. Anal....
    • Fu, X.: Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay. Evol. Equ. Control Theory 6(4),...
    • Fu, X., Rong, H.: Approximate controllability of semilinear non-autonomous evolutionary systems with nonlocal conditions. Autom. Remote Control...
    • Ge, F.D., Zhou, H.C., Kou, C.H.: Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive...
    • George, R.K.: Approximate controllability of nonautonomous semilinear systems. Nonlinear Anal. Theory Methods Appl. 24(9), 1377–1393 (1995) Article...
    • Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, Springer, New York (2006) Google Scholar
    • Hilfer, R.: Functional Analytic Methods for Partial Differential Equations. Marcel Dekker, New York (1997) Google Scholar
    • Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) Book Google Scholar
    • Ji, S.: Approximate controllability of semilinear nonlocal fractional differential systems via an approximating method. Appl. Math. Comput....
    • Kavitha, K., Nisar, K.S., Shukla, A., Vijayakumar, V., Rezapour, S.: A discussion concerning the existence results for the Sobolev-type Hilfer...
    • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) Google...
    • Kumar, S., Sukavanam, N.: Approximate controllability of fractional order semilinear systems with bounded delay. J. Differ. Equ. 252(11),...
    • Kumar, V., Malik, M., Debbouche, A.: Stability and controllability analysis of fractional damped differential system with non-instantaneous...
    • Li, M., Wang, J.: Exploring delayed Mittag–Leffler type matrix functions to study finite time stability of fractional delay differential equations....
    • Ma, Y.K., Kavitha, K., Albalawi, W., Shukla, A., Nisar, K.S., Vijayakumar, V.: An analysis on the approximate controllability of Hilfer fractional...
    • Mahmudov, N.I.: Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM J. Control...
    • Mahmudov, N.I.: Controllability of semilinear stochastic systems in Hilbert spaces. J. Math. Analy. Appl. 288(1), 197–211 (2003) Article MathSciNet...
    • Mishra, K.K., Dubey, S.: On space-fractional diffusion equations with conformable derivative. In: Computational Sciences—Modelling, Computing...
    • Mishra, K.K., Dubey, S., Baleanu, D.: Existence and controllability of a class of non-autonomous nonlinear evolution fractional integrodifferential...
    • Nisar, K.S., Vijayakumar, V.: Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral...
    • Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1998) Google Scholar
    • Raja, M.M., Vijayakumar, V., Shukla, A., Nisar, K.S., Baskonus, H.M.: On the approximate controllability results for fractional integrodifferential...
    • Raja, M.M., Vijayakumar, V., Udhayakumar, R., Zhou, Y.: A new approach on the approximate controllability of fractional differential evolution...
    • Sakthivel, R., Ren, Y., Mahmudov, N.I.: On the approximate controllability of semilinear fractional differential systems. Comput. Math. Appl....
    • Sarychev, A., Shiryaev, A.N., Guerra, M., do Rosario Grossinho, M.: Mathematical Control Theory and Finance. Springer, Berlin (2008) Book...
    • Sharma, M., Dubey, S.: Asymptotic behavior of solutions to nonlinear nonlocal fractional functional differential equations. J. Nonlinear Evol....
    • Sharma, M., Dubey, S.: Controllability of Sobolev type nonlinear nonlocal fractional functional integrodifferential equations. Prog. Fract....
    • Sharma, M., Dubey, S.: Analysis of fractional functional differential equations of neutral type with nonlocal conditions. Differ. Equ. Dyn....
    • Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, Berlin (2013) Google Scholar
    • Tiwari, P., Pandey, R.K., Pandey, D.: Study of existence results for fractional functional differential equations involving Riesz–Caputo derivative....
    • Vijayakumar, V., Udhayakumar, R.: Results on approximate controllability for non-densely defined Hilfer fractional differential system with...
    • Weiss, C.J., van Bloemen Waanders, B.G., Antil, H.: Fractional operators applied to geophysical electromagnetics. Geophys. J. Int. 220(2),...
    • Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl....
    • Zeidler, E.: Nonlinear Functional Analysis: Fixed-Point Theorem, vol. 1. Springer, Berlin (1986) Google Scholar
    • Zhou, H.X.: Approximate controllability for a class of semilinear abstract equations. SIAM J. Control Optim. 21(4), 551–565 (1983) Article...
    • Zhou, Y., Wang, J., Zhang, L.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2016) Book Google Scholar
    • Zhu, B., Han, B.: Approximate controllability for mixed type non-autonomous fractional differential equations. Qual. Theory Dyn. Syst. 21(4),...
    • Zhu, B., Han, B.Y., Yu, W.: Existence of mild solutions for a class of fractional non-autonomous evolution equations with delay. Acta Math....
    • Zhu, B., Liu, L., Wu, Y.: Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction–diffusion equations...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno