Ir al contenido

Documat


Existence and Controllability of a Class of Non-autonomous Nonlinear Evolution Fractional Integrodifferential Equations with Delay

  • Kamla Kant Mishra [2] ; Shruti Dubey [2] ; Dumitru Baleanu [1]
    1. [1] Lebanese American University

      Lebanese American University

      Líbano

    2. [2] Indian Institute of Technology, Madras
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this article, we investigate the existence of mild solutions and the controllability of a class of nonlinear fractional evolution integrodifferential equations in Banach spaces.

      To reach the conclusions, the Banach contraction mapping principle, the measure of noncompactness, the theory of resolvent operators, and the fixed point theorems are used. Finally, three instances are presented to show the efficacy of the proposed outcomes.

  • Referencias bibliográficas
    • 1. Acquistapace, P.: Evolution operators and strong solutions of abstract linear parabolic equations. Differ. Integr. Equ. 1(4), 433–457 (1988)
    • 2. Akhmerov, R.R., Kamenskii, M.I., Potapov, A.S., Rodkina, A., Sadovskii, B.N.: Measures of Noncompactness and Condensing Operators, vol....
    • 3. Amann, H.: Parabolic evolution equations and nonlinear boundary conditions. J. Differ. Equ. 72(2), 201–269 (1988)
    • 4. Balachandran, K., Park, J.: Controllability of fractional integrodifferential systems in Banach spaces. Nonlinear Anal. Hybrid Syst. 3(4),...
    • 5. Bana´s, J.: On measures of noncompactness in Banach spaces. Comment. Math. Univ. Carol. 21(1), 131–143 (1980)
    • 6. Berrahmoune, L.: A variational approach to constrained controllability for distributed systems. J. Math. Anal. Appl. 416(2), 805–823 (2014)
    • 7. Biazar, J., Ghanbari, B.: The homotopy perturbation method for solving neutral functional-differential equations with proportional delays....
    • 8. Bragdi, M., Hazi, M.: Existence and controllability result for an evolution fractional integrodifferential systems. Int. J. Contemp. Math....
    • 9. Burlic˘a, M.D., Necula, M., Daniela, R., Vrabie, I.I.: Delay Differential Evolutions Subjected to Nonlocal Initial Conditions. CRC Press,...
    • 10. Chauhan, A., Dabas, J.: Local and global existence of mild solution to an impulsive fractional functional integro-differential equation...
    • 11. Chen, P., Li, Y.: Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions. RM 63(3), 731–744...
    • 12. Chen, P., Li, Y., Zhang, X.: Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families....
    • 13. Chen, P., Zhang, X., Li, Y.: Study on fractional non-autonomous evolution equations with delay. Comput. Math. Appl. 73(5), 794–803 (2017)
    • 14. Chen, P., Zhang, X., Li, Y.: Approximate controllability of non-autonomous evolution system with nonlocal conditions. J. Dyn. Control...
    • 15. Chen, P., Zhang, X., Li, Y.: Existence and approximate controllability of fractional evolution equations with nonlocal conditions via...
    • 16. Debbouche, A., Baleanu, D.: Exact null controllability for fractional nonlocal integrodifferential equations via implicit evolution system....
    • 17. Deimling, K.: Nonlinear Functional Analysis. Courier Corporation, Chelmsford (2010)
    • 18. Dubey, S., Sharma, M.: Solutions to fractional functional differential equations with nonlocal conditions. Fract. Calc. Appl. Anal. 17(3),...
    • 19. Fitzgibbon, W.: Semilinear functional differential equations in Banach space. J. Differ. Equ. 29(1), 1–14 (1978)
    • 20. Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston, Inc., New York (1969)
    • 21. Gautam, G.R., Dabas, J.: Mild solutions for class of neutral fractional functional differential equations with not instantaneous impulses....
    • 22. Ge, F.D., Zhou, H.C., Kou, C.H.: Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive...
    • 23. Gou, H., Li, B.: Local and global existence of mild solution to impulsive fractional semilinear integrodifferential equation with noncompact...
    • 24. Jiang, H.: Existence results for fractional order functional differential equations with impulse. Comput. Math. Appl. 64(10), 3477–3483...
    • 25. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam...
    • 26. Liao, F., Lu, Y., Liu, H.: Cooperative optimal preview tracking control of continuous-time multi-agent systems. Int. J. Control 89(10),...
    • 27. Lishan, L., et al.: Iterative method for solutions and coupled quasi-solutions of nonlinear Fredholm integral equations in ordered Banach...
    • 28. Liu, L.: Iterative method for solutions and coupled quasi-solutions of nonlinear integro-differential equations of mixed type in Banach...
    • 29. Liu, L., Guo, F., Wu, C., Wu, Y.: Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces....
    • 30. Liu, Z., Lv, J., Sakthivel, R.: Approximate controllability of fractional functional evolution inclusions with delay in Hilbert spaces....
    • 31. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications....
    • 32. Ockendon, J.R., Tayler, A.B.: The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Lond. A Math. Phys....
    • 33. Ouyang, Z.: Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay....
    • 34. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44. Springer, Berlin (2012)
    • 35. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods...
    • 36. Sakthivel, R., Anthoni, S.M., Kim, J.: Existence and controllability result for semilinear evolution integrodifferential systems. Math....
    • 37. Sharma, M., Dubey, S.: Asymptotic behavior of solutions to nonlinear nonlocal fractional functional differential equations. J. Nonl. Evol....
    • 38. Sharma, M., Dubey, S.: Controllability of Sobolev type nonlinear nonlocal fractional functional integrodifferential equations. Prog. Fract....
    • 39. Sharma, M., Dubey, S.: Analysis of fractional functional differential equations of neutral type with nonlocal conditions. Differ. Equ....
    • 40. Shu, X.B., Lai, Y., Chen, Y.: The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear Anal....
    • 41. Smith, H.L.: An Introduction to Delay Differential Equations with Applications to the Life Sciences, vol. 57. Springer, New York (2011)
    • 42. Tai, Z., Wang, X.: Controllability of fractional-order impulsive neutral functional infinite delay integrodifferential systems in Banach...
    • 43. Wang, J.: Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces. Appl. Math. Comput. 256, 315–323...
    • 44. Weiss, C.J., van Bloemen Waanders, B.G., Antil, H.: Fractional operators applied to geophysical electromagnetics. Geophys. J. Int. 220(2),...
    • 45. Yan, Z., Lu, F.: Approximate controllability of a multi-valued fractional impulsive stochastic partial integro-differential equation with...
    • 46. Zhu, B., Han, B., Yu, W.: Existence of mild solutions for a class of fractional non-autonomous evolution equations with delay. Acta Math....
    • 47. Zhu, B., Liu, L., Wu, Y.: Local and global existence of mild solutions for a class of nonlinear fractional reaction–diffusion equations...
    • 48. Zhu, B., Liu, L., Wu, Y.: Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction–diffusion equations...
    • 49. Zuazua, E.: Controllability and observability of partial differential equations: some results and open problems. In: Dafermers, C.M.,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno