Ir al contenido

Documat


Approximate Controllability for Mixed Type Non-autonomous Fractional Differential Equations

  • Bo Zhu [1] ; Baoyan Han [2]
    1. [1] Shandong University of Finance and Economics

      Shandong University of Finance and Economics

      China

    2. [2] Shandong University of Art and Design

      Shandong University of Art and Design

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we discuss the approximate controllability for mixed type nonautonomous fractional differential equations. By using the Schauder fixed point theorem and two parameters β−resolvent family, we prove the approximate controllability of the control system. Last of all, the application of our main results is given.

  • Referencias bibliográficas
    • 1. Mohan Raja, M., Vijayakumar, V., Udhayakumar, R., Zhou, Y.: A new approach on the approximate controllability of fractional differential...
    • 2. Mohan Raja, M., Vijayakumar, V., Udhayakumar, R.: A new approach on approximate controllability of fractional evolution inclusions of order...
    • 3. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Shukla, A., Nisar, K.S.: A note on approximate controllability for nonlocal fractional...
    • 4. Dineshkumar, C., Nisar, K.S., Udhayakumar, R., Vijayakumar, V.: New discussion about the approximate controllability of fractional stochastic...
    • 5. Bezerra, F.D.M., Santos, L.A.: Fractional powers approach of operators for abstract evolution equations of third order in time Author links...
    • 6. He, J.W., Lizama, C., Zhou, Y.: The Cauchy problem for discrete time fractional evolution equations. J. Comput. Appl. Math. 370(15), 112683...
    • 7. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Sakthivel, N., Nisar, K.S.: A note on approximate controllability of the Hilfer fractional...
    • 8. Dineshkumar, C., Nisar, K.S., Udhayakumar, R., Vijayakumar, V.: A discussion on approximate controllability of Sobolev-type Hilfer neutral...
    • 9. Zhu, B., Liu, L.S., Wu, Y.H.: Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations...
    • 10. Zhu, B., Liu, L.S., Wu, Y.H.: Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion...
    • 11. Zhu, B., Han, B.Y.: Existence and Uniqueness of Mild Solutions for Fractional Partial Integro-Differential Equations. Mediterr. J. Math....
    • 12. Chen, P.Y., Zhang, X.P., Li, Y.X.: Existence and approximate controllability of fractional evolution equations with nonlocal conditions...
    • 13. Chen, P.Y., Zhang, X.P., Li, Y.X.: Non-autonomous evolution equations of parabolic type with non-instantaneous impulses. Mediterr. J....
    • 14. Chen, P.Y., Zhang, X.P., Li, Y.X.: Study on fractional non-autonomous evolution equations with delay. Comput. Math. Appl. 73, 794–803...
    • 15. Brandibur, O., Kaslik, E.: Stability analysis of multi-term fractional-differential equations with three fractional derivatives. J. Math....
    • 16. Yang, J., Feˇckan, M., Wang, J.R.: Consensus problems of linear multi-agent systems involving conformable derivative. Appl. Math. Comput....
    • 17. Sathiyaraj, T., Wang, J.R., Balasubramaniam, P.: Controllability and Optimal Control for a Class of Time-Delayed Fractional Stochastic...
    • 18. He, W.J., Zhou, Y.: Hölder regularity for non-autonomous fractional evolution equations. Fract. Calc. Appl. Anal. 25, 378–407 (2022)
    • 19. Zhou, Y., He, W.J.: A Cauchy problem for fractional evolution equations with Hilfers fractional derivative on semi-infinite interval....
    • 20. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives: Theory and Applications. Gordon and Breach, Amsterdam...
    • 21. Araya, D., Lizama, C.: Almost automorphic mild solutions to fractional differential equations. Nonlinear Anal. 69, 3692–3705 (2008)
    • 22. Debbouche, A., Baleanu, D.: Controllability of Fractional Evolution Nonlocal Impulsive Quasilinear Delay Integro-Differential Systems....
    • 23. Pazy, A.: Semigroup of linear operators and applications to partial differential equations. SpringerVerlag, New York (1983)
    • 24. Grimer, R.: Resolvent operators for integral equations in Banach spaces. Trans. Amer. Math. Soc. 48, 333–349 (1982)
    • 25. Pruss, J.: On resolvent operators for linear integrodifferential equations of Volterra type. J. Integral Equations. 5, 211–236 (1983)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno