Ir al contenido

Documat


Pontryagin Maximum Principle for Fractional Delay Differential Equations and Controlled Weakly Singular Volterra Delay Integral Equations

  • Jasarat J. Gasimov [1] ; Javad A. Asadzade [1] ; Nazim I. Mahmudov [2]
    1. [1] Eastern Mediterranean University

      Eastern Mediterranean University

      Chipre

    2. [2] Eastern Mediterranean University & Azerbaijan State University of Economics (UNEC)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01049-1
  • Enlaces
  • Resumen
    • This article explores two distinct issues. To begin with, we analyze the Pontriagin maximum principle concerning fractional delay differential equations. Furthermore, we investigate the most effective method for resolving the control problem associated with Eq. (1.1) and its corresponding payoff function (1.2). Subsequently, we explore the Pontryagin Maximum principle within the framework of Volterra delay integral equations (1.3).We enhance the outcomes of our investigation by presenting illustrative examples towards the conclusion of the article.

  • Referencias bibliográficas
    • 1. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)
    • 2. Agrawal, O.P., Defterli, O., Baleanu, D.: Fractional optimal control problems with several state and control variables. J. Vib. Control...
    • 3. Bourdin, L.: A class of fractional optimal control problems and fractional Pontryagin’s systems. Existence of a fractional Noether’s theorem....
    • 4. Diethelm, K.: A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn. 71, 613–619 (2013)
    • 5. Hasan, M.M., Tangpong, X.W., Agrawal, O.P.: Fractional optimal control of distributed systems in spherical and cylindrical coordinates....
    • 6. Kamocki, R.: On the existence of optimal solutions to fractional optimal control problems. Appl. Math. Comput. 25(235), 94–104 (2014)
    • 7. Kamocki, R.: Pontryagin maximum principle for fractional ordinary optimal control problems. Math. Methods Appl. Sci. 37(11), 1668–1686...
    • 8. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives and some of their applications. Sci. Tech. 1 (1987)
    • 9. Yusubov, ss, Mahmudov, E.N.: Optimality conditions of singular controls for systems with Caputo fractional derivatives. J. Ind. Manag....
    • 10. Yusubov, S.S., Mahmudov, E.N.: Some necessary optimality conditions for systems with fractional Caputo derivatives. J. Ind. Manag. Optim....
    • 11. Nirmala, R.J., Balachandran, K., Rodríguez-Germa, L., Trujillo, J.J.: Controllability of nonlinear fractional delay dynamical systems....
    • 12. Pervaiz, B., Zada, A., Etemad, S., Rezapour, S.: An analysis on the controllability and stability to some fractional delay dynamical systems...
    • 13. Pervaiz, B., Zada, A., Popa, I.L., Ben Moussa, S., El-Gawad, H.H.A.: Analysis of fractional integro causal evolution impulsive systems...
    • 14. Lin, P., Yong, J.: Controlled singular Volterra integral equations and Pontryagin maximum principle. SIAM J. Control Optim. 58(1), 136–164...
    • 15. Angell, T.S.: On the optimal control of systems governed by nonlinear Volterra equations. J. Optim. Theory Appl. 19, 29–45 (1976)
    • 16. Belbas, S.A.: A new method for optimal control of Volterra integral equations. Appl. Math. Comput. 189(2), 1902–1915 (2007)
    • 17. Belbas, S.A.: A reduction method for optimal control of Volterra integral equations. Appl. Math. Comput. 197(2), 880–890 (2008)
    • 18. Burnap, C., Kazemi, M.A.: Optimal control of a system governed by nonlinear Volterra integral equations with delay. IMA J. Math. Control...
    • 19. Carlson, D.A.: An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation. J....
    • 20. Vega, C.D.: Necessary conditions for optimal terminal time control problems governed by a Volterra integral equation. J. Optim. Theory...
    • 21. Kamien,M.I.,Muller, E.: Optimal control with integral state equations. Rev. Econ. Stud. 43(3), 469–473 (1976)
    • 22. Vega, C.D.: Necessary conditions for optimal terminal time control problems governed by a Volterra integral equation. J. Optim. Theory...
    • 23. Medhin, N.G.: Optimal processes governed by integral equations. J. Math. Anal. Appl. 120(1), 1–2 (1986)
    • 24. Vinokurov, V.R.: Optimal control of processes described by integral equations. I. SIAM J. Control 7(2), 324–336 (1969)
    • 25. Ahmadova, A., Mahmudov, N.I.: Picard approximation of a singular backward stochastic nonlinear Volterra integral equation. arXiv:2109.08950...
    • 26. Asadzade, J.A., Gasimov, J.J., Mahmudov, N.I.: Delayed Gronwall inequality with weakly singular kernel. arXiv:2306.11131 (2023). (Submitted...
    • 27. Idczak, D.: Optimal control problem governed by a highly nonlinear singular Volterra equation: existence of solutions and maximum principle....
    • 28. Gasimov, J.J., Mahmudov, N.I.: Second-order maximum principle controlled weakly singular Volterra integral equations. arXiv:2401.15740...
    • 29. Yang, B., Wu, J., Guo, T.: Well-posedness and regularity of mean-field backward doubly stochastic Volterra integral equations and applications...
    • 30. Hamaguchi, Y.: On the maximum principle for optimal control problems of stochastic Volterra integral equations with delay. Appl. Math....
    • 31. Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Springer, Berlin (2012)
    • 32. Ahmadova, A., Mahmudov, N.: Stochastic maximum principle for discrete time mean-field optimal control problems. Opt. Control Appl. Methods...
    • 33. Mahmudov, N.I., Bashirov, A.E.: First order and second order necessary conditions of optimality for stochastic systems. In: Proceedings...
    • 34. Archibald, R., Bao, F., Yong, J.: A stochastic maximum principle approach for reinforcement learning with parameterized environment. J....
    • 35. Melikov, T.K.: An analogue of Pontryagin’s maximum principle in systems with neutral-type delay. Comput. Math. Math. Phys. 36(11), 1541–1546...
    • 36. Melikov, T.K.: Recurrence conditions for the optimality of singular controls in systems with delay. In: Doklady Akademii Nauk, vol. 322,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno