Ir al contenido

Documat


Picard Approximation of a Singular Backward Stochastic Nonlinear Volterra Integral Equation

  • Autores: Arzu Ahmadova, Nazim I. Mahmudov
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01043-7
  • Enlaces
  • Resumen
    • In this paper we prove that Picard iterations of BSDEs with globally Lipschitz continuous nonlinearities converge exponentially fast to the solution. Our main result in this paper is to establish a fundamental lemma to prove the global existence and uniqueness of an adapted solution to a singular backward stochastic nonlinear Volterra integral equation (for short, singular BSVIE) of order α ∈ ( 1 2 , 1) under a weaker condition than Lipschitz one in Hilbert space.

  • Referencias bibliográficas
    • 1. Bismut, J.M.: Theorie probabiliste du controle des diffusions. Mem. Am. Math. Soc. 176, 1–30 (1973)
    • 2. Bensoussan, A.: Lectures on stochastic control. In: Mittler, S.K., Moro, A. (eds.) Nonlinear Filtering and Stochastic Control, pp. 1–62....
    • 3. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 55–61 (1990)
    • 4. Tang, S., Li, X.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control. Optim. 32, 1447–1475...
    • 5. Pardoux, E., Rascanu, A.: Backward stochastic variational inequalities. Stoch. Stoch. Rep. 67(3–4), 159–167 (1999)
    • 6. Peng, S.: Backward stochastic differential equations and applications to optimal control. Appl. Math. Optim. 27, 125–144 (1993)
    • 7. Peng, S.: A generalized dynamic programming principle and Hamilton–Jacobi–Bellman equation. Stoch. Stoch. Rep. 38, 119–134 (1992)
    • 8. Hu, Y., Peng, S.: Adapted solutions of a backward semilinear stochastic evolution equation. Stoch. Anal. Appl. 9(4), 445–459 (1991)
    • 9. Peng, S.: Probabilistic interpletation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep. 32, 61–74...
    • 10. Rong, S.: On solutions of backward stochastic differential equations with jumps and with nonLipschitzian coefficients in Hilbert spaces...
    • 11. Tessitore, G.: Existence, uniqueness, and space regularity of the adapted solutions of a backward SPDE. Stoch. Anal. Appl. 14(4), 461–486...
    • 12. Rong, S.: On solutions of backward stochastic differential equations with jumps and applications. Stoch. Process. Appl. 66, 209–236 (1997)
    • 13. Wang, T., Yong, J.: Backward stochastic Volterra integral equations-representation of adapted solutions. Stoch. Process. Appl. 129, 4926–4964...
    • 14. Mahmudov, N.I., McKibben, M.A.: On backward stochastic evolution equations in Hilbert spaces and optimal control, Nonlinear. Analysis...
    • 15. Mao, X.: Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients. Stoch. Process. Appl. 58, 281–292...
    • 16. Lin, J.: Adapted solution of a backward stochastic nonlinear Volterra integral equation. Stoch. Anal. Appl. 20(1), 165–183 (2002)
    • 17. Yong, J.: Backward stochastic Volterra integral equations and some related problems. Stoch. Process. Appl. 116, 779–795 (2006)
    • 18. Yong, J.: Well-posedness and regularity of backward stochastic Volterra integral equations. Probab. Theory Relat. Fields 142, 21–77 (2008)
    • 19. Shi, Y., Wen, J., Xiong, J.: Backward doubly stochastic Volterra integral equations and their applications. J. Differ. Equ. 269, 6492–6528...
    • 20. Agram, N., Djehiche, B.: On a class of reflected backward stochastic Volterra integral equations and related time-inconsistent optimal...
    • 21. Hernández, C.: On quadratic multidimensional type-I BSVIEs, infinite families of BSDEs and their applications. Stoch. Process. Appl. 162,...
    • 22. Hernández, C., Possamai, D.: A unified approach to well-posedness of type-I backward stochastic Volterra integral equations. Electron....
    • 23. Wang, H., Yong, J.: Time-inconsistent stochastic optimal control problems and backward stochastic Volterra integral equations. ESAIM Control...
    • 24. Wang, T.: Backward stochastic Volterra integro-differential equations and applications in optimal control problems. SIAM J. Control. Optim....
    • 25. Shi, Y.,Wang, T., Yong, J.: Mean-field backward stochastic Volterra integral equations. Discrete Contin. Dyn. Syst. Ser. B 18, 1929–1967...
    • 26. Overbeck, L., Rod¨er, J.: Path-dependent backward stochastic Volterra integral equations with jumps, differentiability and duality principle....
    • 27. Hamaguchi, Y.: Infinite horizon backward stochastic Volterra inntegral equations and discounted control problems. ESAIM Control Optim....
    • 28. Popier, A.: Backward stochastic Volterra integral equations with jumps in a general filtration. ESAIM Probab. Stat. 25, 133–203 (2021)
    • 29. Mahmudov, N.I., Ahmadova, A.: Some results on backward stochastic differential equations of fractional order. Qual. Theory Dyn. Syst....
    • 30. Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Heidelberg (2000)
    • 31. Jacod, J., Shiryaev, A.: Limit theorems for stochastic processes, volume 288 of Grundlehren der mathematischen Wissenschaften. Springer,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno