Ir al contenido

Documat


Periodic Solution and Almost Periodic Solution of a Multispecies Logarithmic Population Model with Piecewise Constant Argument

  • Xiaoxiao Cui [1] ; Yonghui Xia [2]
    1. [1] Zhejiang Normal University

      Zhejiang Normal University

      China

    2. [2] Foshan University

      Foshan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Combining the spectral radius of matrix with the generalized Banach fixed point theory and some properties of exponential contraction, we prove periodic solution and almost periodic solution of a neutral delay multispecies logarithmic population model with piecewise constant argument is existent and unique in appropriate conditions.

      The results have generalized and improved some results of literature on logarithmic population model. Finally, one example is given to illustrate our results.

  • Referencias bibliográficas
    • 1. Li, Y.: Attractivity of a positive periodic solution for all other positive solution in a delay population model. Appl. Math. JCU 12(3),...
    • 2. Chen, W., Wang, W.: Global exponential stability of positive almost periodic solutions for a delay logarithmic population model. J. Appl....
    • 3. Alzabut, J., Stamov, G., Sermutlu, E.: Positive almost periodic solutions for a delay logarithmic population model. Math. Comput. Model....
    • 4. Li, Y.: On a periodic neutral delay logarithmic population model. J. Syst. Sci. Math. Sci. 19(1), 34–38 (1999). ((in Chinese))
    • 5. Yang, Z., Cao, J.: Sufficient conditions for the existence of positive periodic solutions of a class of neutral delay models. Appl. Math....
    • 6. Lu, S., Ge, W.: Existence of positive periodic solutions for neutral logarithmic population model with multiple delays. J. Comput. Appl....
    • 7. Lu, S., Ge, W.: Existence of positive periodic solutions for neutral delay logarithmic population model. J. Syst. Sci. Math. Sci. 25(4),...
    • 8. Wang, Q., Wang, Y., Dai, B.: Existence and uniqueness of positive periodic solutions for a neutral logarithmic population model. Appl....
    • 9. Luo, Y., Luo, Z.: Existence of positive periodic solutions for neutral multi-delay logarithmic population model. Appl. Math. Comput. 216(4),...
    • 10. Wang, R., Zhang, X.: Positive periodic solution for a neutral logarithmic population model with feedback control. Appl. Math. Comput....
    • 11. Tang, M., Tang, X.: Positive periodic solutions for neutral multi-delay logarithmic population model. J. Inequal. Appl. 10, 9 (2012)
    • 12. Liu, Z.: Positive periodic solutions for delay multispecies logarithmic population model. J. Eng. Math. 19(4), 11–16 (2002). (in Chinese)
    • 13. Chen, F.: Periodic solutions and almost periodic solutions for a delay multispecies logarithmic population model. Appl. Math. Comput....
    • 14. Chen, F.: Periodic solutions and almost periodic solutions of a neutral multispecies logarithmic population model. Appl. Math. Comput....
    • 15. Wang, C., Shi, J.: Periodic solution for a delay multispecies logarithmic population model with feedback control. Appl. Math. Comput....
    • 16. Zhao,W.: New results of existence and stability of periodic solution for a delay multispecies logarithmic population model. Nonlinear...
    • 17. Zhao, Y., Wang, L., Zhao, H.: Existence and exponential stability of almost periodic solutions for a neutral multi-species logarithmic...
    • 18. Luo, Z., Luo, L.: Existence and stability of positive periodic solutions for a neutral multispecies logarithmic population model with...
    • 19. Xia, Y.: Almost periodic solution of a population model: via spectral radius of matrix. Bull. Malays. Math. Sci. Soc. 37, 249–259 (2014)
    • 20. Wu, Y., Xia, Y., Deng, S.: Existence and stability of pseudo almost periodic solutions for a delayed multispecies logarithmic population...
    • 21. Abbas, S., Bahuguna, D.: Almost periodic solutions of neutral functional differential equations. Comput. Math. Appl. 55(11), 2593–2601...
    • 22. Abbas, S., Sen, M., Banerjee, M.: Almost periodic solution of a non-autonomous model of phytoplankton allelopathy. Nonlinear Dyn. 67(1),...
    • 23. Abbas, S., Bahuguna, D.: Almost periodic solutions of nonlinear functional differential equations. Differ. Equ. Dyn. Syst. 16(3), 289–308...
    • 24. Tyagi, S., Abbas, S., Pinto, M.: Global exponential stability in Lagrange sense for periodic neural networks with various activation functions...
    • 25. Almatrafi, M., Alzubaidi, M.: Periodic solutions and stability of eighth order rational difference equations. J. Math. Comput. Sci. 26(4),...
    • 26. Ding, H., Nieto, J., Zou, Q.: Multiple positive almost periodic solutions for some nonlinear integral equations. J. Nonlinear Sci. Appl....
    • 27. Lin, S., Zhou, Q., Wu, R.: Positive periodic solution of a discrete commensal symbiosis model with Beddington–DeAngelis functional response....
    • 28. Kirlinger, G.: Permanence in Lotka–Volterra equations: linked prey-predator systems. Math. Biosci. 82, 165–191 (1986)
    • 29. Gopalsamy, K.: Stability and oscillations in delay differential equations of population dynamics. Kluwer Academic Publishers, Dordrecht...
    • 30. Wang, C., Lit, L., Zhou, Y., Li, R.: On a delay ratio-dependent predator-prey system with feedback controls and shelter for the prey....
    • 31. Wang, C., Li, N., Zhou, Y., Pu, X., Li, R.: On a multi-delay Lotka–Volterra predator-prey model with feedback controls and prey diffusion....
    • 32. Zhang, Y., Wang, C.: Stability analysis of n-species Lotka–Volterra almost periodic competition models with grazing rates and diffusion....
    • 33. Akhmet, M.: Integral manifolds of differential equations with piecewise constant argument of generalized type. Nonlinear Anal. 66, 367–383...
    • 34. Akhmet, M., Öktem, H., Pickl, S., Weber, G.: An anticipatory extension of Malthusian model. In: Dubois, D.M. (ed) CASYS 2005-Seventh International...
    • 35. Papaschinopoulos, G.: Linearization near the integral manifold for a system of differential equations with piecewise constant argument....
    • 36. Pinto, M.: Cauchy and Green matrices type and stability in alternately advanced and delayed differential systems. J. Differ. Equ. Appl....
    • 37. Pinto, M., Robledo, G.: A Grobman–Hartman theorem for differential equations with piecewise constant arguments of mixed type. Z. Anal....
    • 38. Huang, H., Xia, Y.: New results on linearization of differential equations with piecewise constant argument. Qual. Theory Dyn. Syst. 19(1),...
    • 39. Zou, C., Xia, Y., Pinto, M., Shi, J., Bai, Y.: Boundness and linearisation of a class of differential equations with piecewise constant...
    • 40. Yuan, R., Hong, J.: The existence of almost periodic solutions for a class of differential equations with piecewise constant argument....
    • 41. Yuan, R.: On the second-order differential equation with piecewise constant argument and almost periodic coeffcients. Nonlinear Anal....
    • 42. Seifert, G.: Almost periodic solutions of certain differential equations with piecewise constant delays and almost periodic time dependence....
    • 43. Yuan, R.: On the logistic delay differential equations with piecewise constant argument and quasiperiodic time dependence. J. Math. Anal....
    • 44. Feng, Q., Yuan, R.: On the Lasota–Wazewska model with piecewise constant argument. Acta Math. Sci. 26B(2), 371–378 (2006)
    • 45. Mu, D., Xu, C., Liu, Z., Pang, Y.: Further insight into bifurcation and hybrid control tactics of a chlorine dioxide-iodine-malonic acid...
    • 46. Li, P., Gao, R., Xu, C., Li, Y., Akgül, A., Baleanu, D.: Dynamics exploration for a fractional-order delayed zooplankton-phytoplankton...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno