Ir al contenido

Documat


New Results on Linearization of Differential Equations with Piecewise Constant Argument

  • Huang, Hai [1] ; Yong-Hui, Xia [2]
    1. [1] East China Normal University

      East China Normal University

      China

    2. [2] Zhejiang Normal University

      Zhejiang Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 1, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00353-w
  • Enlaces
  • Resumen
    • In this work, we give a version of Grobman–Hartman theorem for the nonautonomous differential equations with piecewise constant argument of generalized type when the nonlinear term is unbounded and its linear system partially satisfies α-exponential dichotomy. More specifically, we divide the linear system into three subsystems, one of the subsystems is not necessary to admit α-exponential dichotomy. It was assumed that the whole linear system admits exponential dichotomy in Pinto and Robledo (Z Anal Anwend 37:101–126, 2018), Zou and Shi (J Appl Anal Comput 7(1):309–333, 2017) and Zou et al. (Qual Theory Dyn Syst 18:495–531, 2019). Thus, we extend and improve the previous results in the literature. Moreover, we prove that the conjugated function H(t, x) is also ω-periodic when the systems are ω-periodic.

  • Referencias bibliográficas
    • 1. Akhmet, M.U.: Asymptotic behavior of solutions of differential equations with piecewise constant arguments. Appl. Math. Lett. 21(9), 951–956...
    • 2. Akhmet, M.U.: Nonlinear Hybrid Continuous/Discrete Time Models. Atlantis Press, Paris (2011)
    • 3. Akhmet, M.U.: On the reduction principle for differential equations with piecewise constant argument of generalized type. J. Math. Appl....
    • 4. Akhmet, M.U.: Stability of differential equations with piecewise constant arguments of generalized type. Nonlinear Anal. 68, 794–803 (2008)
    • 5. Akhmet, M.U., Büyükadali, C.: Periodic solutions of the system with piecewise constant argument in the critical case. Comput. Math. Appl....
    • 6. Barreira, L., Valls, C.: A Grobman–Hartman theorem for nonuniformly hyperbolic dynamics. J. Differ. Equ. 228, 285–310 (2006)
    • 7. Barreira, L., Valls, C.: A simple proof of the Grobman–Hartman theorem for the nonuniformly hyperbolic flows. Nonlinear Anal. 74, 7210–7225...
    • 8. Barreira, L., Valls, C.: Stable invariant manifolds for delay equations with piecewise constant argument. J. Differ. Equ. Appl. 24(1),...
    • 9. Cabada, A., Ferreiro, J.B., Nieto, J.J.: Green’s function and comparison principles for first order differential equations with piecewise...
    • 10. Castañeda, A., Robledo, G.: A topological equivalence result for a family of nonlinear difference systems having generalized exponential...
    • 11. Castillo, S., Pinto, M.: Existence and stability of almost periodic solutions to differential equations with piecewise constant argument....
    • 12. Chiu, K., Pinto, M.: Periodic solutions of differential equations with a general piecewise constant argument and applications. Electron....
    • 13. Coronel, A., Maulén, C., Pinto, M., Sepúlveda, D.: Dichotomies and asymptotoic equivalence in alternately advanced and delayed differential...
    • 14. Dai, L.: Nonlinear Dynamics of Piecewise Constants Systems and Implementation of Piecewise Constants Arguments. World Scientific, Singapore...
    • 15. Farkas, G.: A Hartman–Grobman result for retarded functional differential equations with an application to the numerics around hyperbolic...
    • 16. Grobman, D.R.: The topological classification of vicinity of a singular point in n-dimensional space. Math. USSR-sb 56, 77–94 (1962)
    • 17. Guysinsky, M., Hasselblatt, B., Rayskin, V.: Differentiability of the Grobman–Hartman linearization. Discrete Contin. Dyn. Syst. 9, 979–984...
    • 18. Hartman, P.: On the local linearization of differential equation. Proc. Am. Math. Soc. 14, 568–573 (1963)
    • 19. Jiang, L.: Generalized exponential dichotomy and global linearization. J. Math. Anal. Appl. 315, 474–490 (2006)
    • 20. Jiang, L.: Strongly topological linearization with generalized exponential dichotomy. Nonlinear Anal. 67, 1102–1110 (2007)
    • 21. Kurzweil, J., Papaschinopoulos, G.: Topological equivalence and structural stability for linear difference equations. J. Differ. Equ....
    • 22. Lin, F.: Hartman’s linearization on nonautonomous unbounded system. Nonlinear Anal. 66, 38–50 (2007)
    • 23. Llibre, J., del Río, J.P., Rodríguez, J.A.: Structural stability of planar homogeneous polynomial vector fields: applications to critical...
    • 24. Llibre, J., del Río, J.P., Rodríguez, J.A.: Structural stability of planar semi-homogeneous polynomial vector fields: applications to...
    • 25. López-Fenner, J., Pinto, M.: On a Hartman linearization theorem for a class of ODE with impulse effect. Nonlinear Anal. 38, 307–325 (1999)
    • 26. Lu, K.: A Hartman–Grobman theorem for scalar reaction–diffusion equations. J. Differ. Equ. 93, 364– 394 (1991)
    • 27. Miloševi´c, M.: The Euler–Maruyama approximation of solutions to stochastic differential equations with piecewise constant arguments....
    • 28. Oliveira, R., Zhao, Y.: Structural stability of planar quasi-homogeneous vector fields. Qual. Theory Dyn. Syst. 13, 39–72 (2014)
    • 29. Palmer, K.J.: A generalization of Hartman’s linearization theorem. J. Math. Anal. Appl. 41, 752–758 (1973)
    • 30. Papaschinopoulos, G.: A linearization result for a differential equation with piecewise constant argument. Analysis 16, 161–170 (1996)
    • 31. Papaschinopoulos, G.: Exponential dichotomy, topological equivalence and structural stability for differential equations with piecewise...
    • 32. Pinto, M.: Cauchy and Green matrices type and stability in alternately advanced and delayed differential systems. J. Differ. Equ. Appl....
    • 33. Pinto, M., Robledo, G.: A Grobman-Hartman theorem for a differential equation with piecewise constant generalized argument. Z. Anal. Anwend....
    • 34. Pinto, M., Sepúlveda, D., Torres, R.: Exponential periodic attractor of impulsive Hopfield-type neural network system with piecewise constant...
    • 35. Pötzche, C.: Topological decoupling, linearization and perturbation on inhomogeneous time scales. J. Differ. Equ. 245, 1210–1242 (2008)
    • 36. Rodrigues, H.M., Solá-Morales, J.: Linearization of class C1 for contractions on Banach spaces. J. Differ. Equ. 201, 351–382 (2004)
    • 37. Shi, J., Xiong, K.: On Hartman’s linearization theorem and Palmer’s linearization theorem. J. Math. Anal. Appl. 92, 813–832 (1995)
    • 38. Veloz, T., Pinto, M.: Existence, computability and stability for solutions of the diffusion equation with general piecewise constant argument....
    • 39. Xia, Y., Chen, X., Romanovski, V.G.: On the linearization theorem of Fenner and Pinto. J. Math. Anal. Appl. 400, 439–451 (2013)
    • 40. Xia, Y., Li, J., Wong, P.J.Y.: On the topological classification of dynamic equations on time scales. Nonlinear Anal. (RWA) 14, 2231–2248...
    • 41. Yuan, R.: The existence of almost periodic solutions of retarded differential equations with piecewise constant argument. Nonlinear Anal....
    • 42. Zhang, W.M., Zhang, W.N.: C1 linearization for planar contractions. J. Funct. Anal. 260, 2043–2063 (2011)
    • 43. Zhang, W.M., Zhang, W.N.: Sharpness for C1 linearization of planar hyperbolic diffeomorphisms. J. Differ. Equ. 257, 4470–4502 (2014)
    • 44. Zou, C., Shi, J.: Topological linearization of depcags with unbounded nonlinear terms. J. Appl. Anal. Comput. 7(1), 309–333 (2017)
    • 45. Zou, C., Xia, Y., Pinto, M., Shi, J., Bai, Y.: Boundness and linearisation of a class of differential equations with piecewise constant...
    • 46. Zou, C., Xia, Y., Pinto, M.: Hölder regularity of topological equivalence functions of DEPCAGs with unbounded nonlinear terms. Sci. Sin....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno