Ir al contenido

Documat


Boundness and Linearisation of a Class of Differential Equations with Piecewise Constant Argument

  • Zou, Changwu [1] ; Xia, Yonghui [2] ; Pinto, Manuel [3] ; Shi, Jinlin [1] ; Bai, Yuzhen [4]
    1. [1] Fuzhou University

      Fuzhou University

      China

    2. [2] Zhejiang Normal University

      Zhejiang Normal University

      China

    3. [3] Universidad de Chile

      Universidad de Chile

      Santiago, Chile

    4. [4] Qufu Normal University

      Qufu Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 18, Nº 2, 2019, págs. 495-531
  • Idioma: inglés
  • DOI: 10.1007/s12346-018-0297-9
  • Enlaces
  • Resumen
    • The differential equations with piecewise constant argument (DEPCAs, for short) is a class of hybrid dynamical systems (combining continuous and discrete). In this paper, under the assumption that the nonlinear term is partially unbounded, we study the bounded solution and global topological linearisation of a class of DEPCAs of general type. One of the purpose of this paper is to obtain a new criterion for the existence of a unique bounded solution, which improved the previous results. The other aim of this paper is to establish a generalized Grobman–Hartman-type theorem for the topological conjugacy between a nonlinear perturbation system and its linear system. The method is based on the new obtained criterion for bounded solution. The obtained results generalized and improved some previous papers. Some novel techniques are employed in the proof.

  • Referencias bibliográficas
    • 1. Aftabizadeh, A.R., Wiener, J., Xu, J.M.: Oscillatory and periodic solutions of delay differential equations with piecewise constant argument....
    • 2. Akhmet, M.U.: Integral manifolds of differential equations with piecewise constant argument of generalized type. Nonlinear Anal. 66, 367–383...
    • 3. Akhmet, M.U.: On the reduction principle for differential equations with piecewise constant argument of generalized type. J. Math. Appl....
    • 4. Akhmet, M.U.: Stability of differential equations with piecewise constant arguments of generalized type. Nonlinear Anal. 68, 794–803 (2008)
    • 5. Akhmet, M.U.: Nonlinear Hybrid Continuous/Discrete Time Models. Atlantis Press, Paris (2011)
    • 6. Akhmet, M.U.: Exponentially dichotomous linear systems of differential equations with piecewise constant argument. Discontin. Nonlinearity...
    • 7. Barreira, L., Valls, C.: A Grobman-Hartman theorem for nonuniformly hyperbolic dynamics. J. Differ. Equ. 228, 285–310 (2006)
    • 8. Barreira, L., Valls, C.: A simple proof of the Grobman-Hartman theorem for the nonuniformly hyperbolic flows. Nonlinear Anal. 74, 7210–7225...
    • 9. Belitskii, G.R.: Equivalence and normal forms of germs of smooth mappings. Russ. Math. Surv. 33, 107–177 (1978)
    • 10. Cabada, A., Ferreiro, J.B., Nieto, J.J.: Green’s function and comparison principles for first order differential equations with piecewise...
    • 11. Castañeda, A., Robledo, G.: A topological equivalence result for a family of nonlinear difference systems having generalized exponential...
    • 12. Castillo, S., Pinto, M.: Existence and stability of almost periodic solutions to differential equations with piecewise constant argument....
    • 13. Chiu, K.S., Pinto, M.: Periodic solutions of differential equations with a general piecewise constant argument and applications. Electron....
    • 14. Chiu, K.S., Pinto, M., Jeng, J.C.: Existence and global convergence of periodic solutions in the current neural network with a general...
    • 15. Cooke, K.L., Wiener, J.: Oscillations in systems of differential equations with piecewise constant delays. J. Math. Anal. Appl. 137, 221–239...
    • 16. Coronel, A., Maulén, C., Pinto, M., Sepúlveda, D.: Dichotomies and asymptotoic equivalence in alternately advanced and delayed differential...
    • 17. Dai, L.: Nonlinear Dynamics of Piecewise Constants Systems and Implementation of Piecewise Constants Arguments. World Scientific, Singapore...
    • 18. ElBialy, M.S.: Local contractions of Banach spaces and spectral gap conditions. J. Funct. Anal. 182, 108–150 (2001)
    • 19. Farkas, G.: A Hartman-Grobman result for retarded functional differential equations with an application to the numerics around hyperbolic...
    • 20. Grobman, D.R.: The topological classification of vicinity of a singular point in n-dimensional space. Math. USSR-SB 56, 77–94 (1962)
    • 21. Guysinsky, M., Hasselblatt, B., Rayskin, V.: Differentiability of the Grobman–Hartman linearization. Discrete Contin. Dyn. Syst. 9, 979–984...
    • 22. Hartman, P.: On the local linearization of differential equation. Proc. Am. Math. Soc. 14, 568–573 (1963)
    • 23. Huang, Z.K., Xia, Y.H., Wang, X.H.: The existence and exponential attractivity of k-almost periodic sequence solution of discrete time...
    • 24. Jiang, L.: Generalized exponential dichotomy and global linearization. J. Math. Anal. Appl. 315, 474–490 (2006)
    • 25. Jiang, L.: Strongly topological linearization with generalized exponential dichotomy. Nonlinear Anal. 67, 1102–1110 (2007)
    • 26. Kurzweil, J., Papaschinopoulos, G.: Topological equivalence and structural stability for linear difference equations. J. Differ. Equ....
    • 27. Lin, F.: Hartmans linearization on nonautonomous unbounded system. Nonl. Anal. 66, 38–50 (2007)
    • 28. López-Fenner, J., Pinto, M.: On a Hartman linearization theorem for a class of ODE with impulse effect. Nonlinear Anal. 38, 307–325 (1999)
    • 29. Lu, K.: A Hartman-Grobman theorem for scalar reaction-diffusion equations. J. Differ. Equ. 93, 364– 394 (1991)
    • 30. McSwiggen, P.: A geometric characterization of smooth linearizability. Michigan Math. J. 43, 321–335 (1996)
    • 31. Nakata, Y.: Global asymptotic stability beyond 3/2 type stability for a logistic equation with piecewise constants arguments. Nonlinear...
    • 32. Palmer, K.J.: A generalization of Hartman’s linearization theorem. J. Math. Anal. Appl. 41, 752–758 (1973)
    • 33. Palmer, K.J.: Linearization near an integral manifold. J. Math. Anal. Appl. 51, 243–255 (1975)
    • 34. Papaschinopoulos, G.: Exponential dichotomy, topological equivalence and structural stability for differential equations with piecewise...
    • 35. Papaschinopoulos, G.: A linearization result for a differential equation with piecewise constant argument. Analysis 16, 161–170 (1996)
    • 36. Papaschinopoulos, G.: On the integral manifold for a system of differential equations with piecewise constant argument. J. Math. Anal....
    • 37. Pinto, M., Robledo, G.: A Grobman-Hartman theorem for a differential equation with piecewise constant generalized argument. http://arxiv.org/abs/1506.00533
    • 38. Pinto, M.: Asymptotic equivalence of nonlinear and quasi linear differential equations with piecewise constant arguments. Math. Comp....
    • 39. Pinto, M.: Cauchy and Green matrices type and stability in alternately advanced and delayed differential systems. J. Differ. Equ. Appl....
    • 40. Pinto,M., Robledo, G.: Controllability and observability for a linear time varying system with piecewise constant delay. Acta Appl. Math....
    • 41. Pötzche, C.: Topological decoupling, linearization and perturbation on inhomogeneous time scales. J. Differ. Equ. 245, 1210–1242 (2008)
    • 42. Pugh, C.: On a theorm of P. Hartman. Am. J. Math 91, 363–367 (1969)
    • 43. Rodrigues, H.M., Solá-Morales, J.: Linearization of class C1 for contractions on Banach spaces. J. Differ. Equ. 201, 351–382 (2004)
    • 44. Rodrigues, H.M., Solá-Morales, J.: Smooth linearization for a saddle on Banach spaces. J. Dyn. Differ. Equ. 16, 767–793 (2004)
    • 45. Sell, G.: Smooth linearization near a fixed point. Am. J. Math. 107, 1035–1091 (1985)
    • 46. Seuret, A.: A novel stability analysis of linear systems under asynchronous samplings. Automatica 48, 177–182 (2012)
    • 47. Shi, J., Xiong, K.: On Hartman’s linearization theorem and Palmer’s linearization theorem. J. Math. Anal. Appl. 92, 813–832 (1995)
    • 48. Sternberg, S.: Local Cn transformations of the real line. Duke Math. J. 24, 97–102 (1957)
    • 49. Sternberg, S.: Local contractions and a theorem of Poincaré. Am. J. Math. 79, 809–824 (1957)
    • 50. Veloz, T., Pinto, M.: Existence, computability and stability for solutions of the diffusion equation with general piecewise constant argument....
    • 51. Wiener, J.: Generalized Solutions of Functional Differential Equations. World Scientific, Singapore (1993)
    • 52. Yuan, R.: The existence of almost periodic solutions of retarded differential equations with piecewise constant argument. Nonlinear Anal....
    • 53. Yuan, R., Hong, J.: The existence of almost periodic solutions for a class of differential equations with piecewise constant argument....
    • 54. Zhang, W.M., Zhang, W.N.: C1 linearization for planar contractions. J. Funct. Anal. 260, 2043–2063 (2011)
    • 55. Zhang, W.M., Zhang, W.N.: Sharpness for C1 linearization of planar hyperbolic diffeomorphisms. J. Differ. Equ. 257, 4470–4502 (2014)
    • 56. Zhang, W.M., Zhang, W.N., Jarczyk, W.: Sharp regularity of linearization for C1,1 hyperbolic diffeomorphisms. Math. Ann. 358, 69–113 (2014)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno