Ir al contenido

Documat


A New Approach on the Approximate Controllability Results for Hilfer Fractional Stochastic Hemivariational Inequalities of Order 1 < < 2

  • J. Pradeesh [1] ; V. Vijayakumar [1]
    1. [1] Vellore Institute of Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01012-0
  • Enlaces
  • Resumen
    • In this paper, we investigate the approximate controllability for Hilfer fractional stochastic hemivariational inequalities of order 1 <μ< 2 in Hilbert spaces. Initially, we define the concept of a mild solution for our problem in terms of fractional calculus, cosine families, stochastic analysis, and generalized Clarke subdifferential.

      Then, the existence and approximate controllability for Hilfer fractional stochastic evolution hemivariational inequalities are formulated and proven under appropriate conditions using fixed point theorems for multivalued maps. Finally, an example is presented to illustrate the theory.

  • Referencias bibliográficas
    • 1. Ahmed, H.M., El-Owaidy, H.M., AL-Nahhas, M.A.: Neutral fractional stochastic partial differential equations with Clarke subdifferential....
    • 2. Balachandran, K., Govindaraj, V.: Numerical controllability of fractional dynamical systems. Optimization 63, 1267–1279 (2014)
    • 3. Balachandran, K., Govindaraj, V., Rodriguez-Germa, L., Trujillo, J.J.: Controllability of nonlinear higher order fractional dynamical systems....
    • 4. Balachandran, K., Govindaraj, V., Rodriguez-Germa, L., Trujillo, J.J.: Controllability results for nonlinear fractional order dynamical...
    • 5. Balachandran, K., Govindaraj, V., Rivero,M., Trujillo, J.J.: Controllability of fractional damped dynamical systems. Appl. Math. Comput....
    • 6. Baleanu, D., Jafari, H., Khan, H., Johnston, S.J.: Results for Mild solution of fractional coupled hybrid boundary value problems. Open...
    • 7. Baleanu, D., Khan, H., Jafari, H., Khan, R.A.: On the exact solution of wave equations on cantor sets. Entropy 17(9), 6229–6237 (2015)
    • 8. Bashirov, A.E., Mahmudov, N.I.: On Concepts of controllability for deterministic and stochastic systems. SIAM J. Control Optim. 37(6),...
    • 9. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
    • 10. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)
    • 11. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Shukla, A., Nisar, K.S.: New discussion regarding approximate controllability for Sobolev-type...
    • 12. Furati, K.M., Kassim, M.D., Tatar, N.E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math....
    • 13. Govindaraj, V., George, R.K.: Controllability of fractional dynamical systems: a functional analytic approach. Math. Control Related Fields...
    • 14. Gu, H.B., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257,...
    • 15. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)
    • 16. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis (Theory). Kluwer Academic Publishers, Dordrecht (1997)
    • 17. Hussain, S.,Madi, E.N., Khan, H., Gulzar, H., Etemad, S., Rezapour, S., Kaabar,M.K.: On the stochastic modeling of COVID-19 under the...
    • 18. Kavitha, K., Vijayakumar, V.: An analysis regarding to approximate controllability for Hilfer fractional neutral evolution hemivariational...
    • 19. Khan, H., Alzabut, J., Baleanu, D., Alobaidi, G., Rehman, M.U.: Existence of solutions and a numerical scheme for a generalized hybrid...
    • 20. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics...
    • 21. Li, X., Liu, X.: Approximate controllability for Hilfer fractional stochastic evolution inclusion with nonlocal conditions. Stoch. Anal....
    • 22. Li, Q., Zhou, Y.: The existence of mild solutions for Hilfer fractional stochastic evolution equations with order μ ∈ (1, 2). Fractal...
    • 23. Li, X., Liu, Z., Migorski, S.: Approximate controllability for second order nonlinear evolution hemivariational inequalities. Electron....
    • 24. Li, X., Liu, Z., Li, J., Tisdell, C.: Existence and controllability for nonlinear fractional control systems with damping in Hilbert spaces....
    • 25. Li, P., Gao, R., Xu, C., Lu, Y., Shang, Y.: Dynamics in a fractional order predator–prey model involving Michaelis Menten type functional...
    • 26. Li, P., Gao, R., Xu, C., Li, Y., Akgöl, A., Baleanu, D.: Dynamics exploration for a fractional-order delayed zooplankton-phytoplankton...
    • 27. Li, P., Lu, Y., Xu, C., Ren, J.: Bifurcation phenomenon and control technique in fractional BAM neural network models concerning delays....
    • 28. Liu, Z., Li, X.: Approximate controllability of fractional evolution systems with Riemann–Liouville fractional derivatives. SIAM J. Control...
    • 29. Liu, Z., Papageorgiou, N.S.: Double phase Dirichlet problems with unilateral constraints. J. Differ. Equ. 316, 249–269 (2022)
    • 30. Liu, Z., Li, X., Motreanu, D.: Approximate controllability for nonlinear evolution hemivariational inequalities in Hilbert spaces. SIAM...
    • 31. Liu, Y., Liu, Z., Papageorgiou, N.S.: Sensitivity analysis of optimal control problems driven by dynamic history-dependent variational-hemivariational...
    • 32. Lu, L., Liu, Z.: Existence and controllability results for stochastic fractional evolution hemivariational inequalities. Appl. Math. Comput....
    • 33. Lu, L., Liu, Z., Bin, M.: Approximate controllability for stochastic evolution inclusions of Clarke’s subdifferential type. Appl. Math....
    • 34. Ma, T.W.: Topological degrees for set-valued compact vector fields in locally convex spaces. Diss. Math. 92, 1–43 (1992)
    • 35. Makhlouf, A.B., Benjemaa, M., Boucenna, D., Hammami, M.A.: Darboux problem for proportional partial fractional differential equations....
    • 36. Makhlouf, A.B., Mchiri, L., Srivastava, H.M.: Some existence and uniqueness results for a class of proportional Liouville–Caputo fractional...
    • 37. Mao, X.: Stochastic Differential Equations and Applications. Woodhead publishing (2007)
    • 38. Migorski, S.: On existence of solutions for parabolic hemivariational inequalities. J. Comput. Appl. Math. 129, 77–87 (2001)
    • 39. Migorski, S., Ochal, A.: Quasi-Static hemivariational inequality via vanishing acceleration approach. SIAM J. Control Optim. 41, 1415–1435...
    • 40. Migorski, S., Ochal, A., Sofonea, M.: Nonlinear inclusions and hemivariational inequalities, models and analysis of contact problems....
    • 41. Panagiotopoulos, P.D.: Nonconvex super potentials in sense of F. H. Clarke and applications. Mech. Res. Commun. 8, 335–340 (1981)
    • 42. Panagiotopoulos, P.D.: Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer, Berlin (1993)
    • 43. Pang, X., Li, X., Liu, Z.: Decay mild solutions of Hilfer fractional differential variationalhemivariational inequalities. Nonlinear Anal....
    • 44. Papageorgiou, N., Hu, S.: Handbook of Multivalued Analysis (Theory). Kluwer Academic Publisher, Dordrecht (1997)
    • 45. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
    • 46. Pradeesh, J., Vijayakumar, V.: Investigating the existence results for Hilfer fractional stochastic evolution inclusions of order 1 <μ<...
    • 47. Raja, M.M., Vijayakumar, V., Huynh, L.N., Udhayakumar, R., Nisar, K.S.: Results on the approximate controllability of fractional hemivariational...
    • 48. Rykaczewski, K.: Approximate controllability of differential inclusions in Hilbert spaces. Nonlinear Anal. Theory Methods Appl. 75, 2701–2712...
    • 49. Sakthivel, R., Ren, Y., Debbouche, A., Mahmudo, N.I.: Approximate controllability of fractional stochastic differential inclusions with...
    • 50. Sanjay, K., Balasubramaniam, P.: Controllability of Hilfer type fractional evolution neutral integrodifferential inclusions with non-instantaneous...
    • 51. Shah, A., Khan, R.A., Khan, A., Khan, H., Gómez-Aguilar, J.F.: Investigation of a system of nonlinear fractional order hybrid differential...
    • 52. Shu, X.B.,Wang, Q.: The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order...
    • 53. Shu, L., Shu, X.B., Mao, J.: Approximate controllability and existence of mild solutions for RiemannLiouville fractional stochastic evolution...
    • 54. Tajadodi, H., Khan, A., Gómez-Aguilar, J.F., Khan, H.: Optimal control problems with Atangana– Baleanu fractional derivative. Optim. Control...
    • 55. Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Hungar. 32, 75–96 (1978)
    • 56. Valliammal, N., Jothimani, K., Johnson, M., Panda, S.K., Vijayakumar, V.: Approximate controllability analysis of impulsive neutral functional...
    • 57. Vivek, S., Vijayakumar, V.: An analysis on the approximate controllability of neutral functional hemivariational inequalities with impulses....
    • 58. Wang, J.R., Liu, X., O’Regan, D.: On the approximate controllability for Hilfer fractional evolution hemivariational inequalities. Numer....
    • 59. Zhao, J., Liu, Z., Liu, Y.: Approximate controllability of non-autonomous second-order evolution hemivariational inequalities with nonlocal...
    • 60. Zhao, J., Chen, J., Liu, Z.: Second order evolutionary problems driven by mixed quasi-variationalhemivariational inequalities. Commun....
    • 61. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
    • 62. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Elsevier, New York (2015)
    • 63. Zhou, Y., He, J.W.: New results on controllability of fractional evolution systems with order α ∈ (1, 2). Evol. Equ. Control Theory 10(3),...
    • 64. Zhou, Y., He, J.W.: A Cauchy problem for fractional evolution equations with Hilfer’s fractional derivative on semi-infinite interval,....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno