Ir al contenido

Documat


Solution Sets for Second-Order Integro-Differential Inclusions with Infinite Delay

  • Abdelhamid Bensalem [1] ; Abdelkrim Salim [2] ; Mouffak Benchohra [1]
    1. [1] Djillali Liabes University of Sidi Bel-Abbès
    2. [2] Hassiba Benbouali University of Chlef, Djillali Liabes University of Sidi Bel-Abbès
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The primary focus of this paper is threefold: first, to investigate the existence of mild solutions; second, to analyze the topological and geometrical structure of the solution sets; and third, to determine the continuous dependence of the solution for secondorder semilinear integro-differential inclusion. In this study, we employ Bohnenblust– Karlin’s fixed point theorem in conjunction with the theory of resolvent operators, as presented by Grimmer. An illustrative example is employed to showcase the achieved outcomes.

  • Referencias bibliográficas
    • 1. Abbas, S., Benchohra, M.: Advanced Functional Evolution Equations and Inclusions, Developments in Mathematics, vol. 39. Springer, Cham...
    • 2. Aissani, K., Benchohra, M., Nieto, J.J.: Controllability for impulsive fractional evolution inclusions with state-dependent delay. Adv....
    • 3. Andres, J., Gabor, G., Górniewicz, L.: Topological structure of solution sets to multi-valued asymptotic problems. Z. Anal. Anwendungen...
    • 4. Andres, J., Gabor, G., Górniewicz, L.: Acyclicity of solution sets to functional inclusions. Nonlinear Anal. Ser. A Theory Methods 49,...
    • 5. Andres, J., Pavlaˇcková, M.: Topological structure of solution sets to asymptotic boundary value problems. J. Differ. Equ. 248, 127–150...
    • 6. Aubin, J.P., Cellina, A.: Differential Inclusion. Springer-Verlag, Berlin, Heidelberg, New York (1984)
    • 7. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990)
    • 8. Aronszajn, N.: Le correspondant topologique de l’unicité dans la théorie des équations différentielles. Ann. Math. 43, 730–738 (1942)
    • 9. Bainov, D., Simeonov, P.: Integral Inequalities and Applications. Springer Science Business Media, Berlin (1992)
    • 10. Bana`s, J., Goebel, K.: Measure of noncompactness in Banach spaces. In: Lecture Notes in Pure and Applied Math, vol. 60. Marcel Dekker,...
    • 11. Benchohra, M., Bouazzaoui, F., Karapınar, E., Salim, A.: Controllability of second order functional random differential equations with...
    • 12. Benchohra, M., Gorniewicz, L., Ntouyas, S.K.: Controllability on infinite time horizon for first and second order functional differential...
    • 13. Benchohra, M., Ntouyas, S.K.: Existence and controllability results for multivalued semilinear differential equations with nonlocal conditions....
    • 14. Benkhettou, N., Aissani, K., Salim, A., Benchohra, M., Tunc, C.: Controllability of fractional integrodifferential equations with infinite...
    • 15. Benkhettou, N., Salim, A., Aissani, K., Benchohra, M., Karapınar, E.: Non-instantaneous impulsive fractional integro-differential equations...
    • 16. Bensalem, A., Salim, A., Ahmad, B., Benchohra,M.: Existence and controllability of integrodifferential equations with non-instantaneous...
    • 17. Bensalem, A., Salim, A., Benchohra, M.: Ulam–Hyers–Rassias stability of neutral functional integrodifferential evolution equations with...
    • 18. Bensalem, A., Salim, A., Benchohra, M., Feˇckan, M.: Approximate controllability of neutral functional integro-differential equations...
    • 19. Bensalem, A., Salim, A., Benchohra, M., N’Guérékata, G.: Functional integro-differential equations with state-dependent delay and non-instantaneous...
    • 20. Bensalem, A., Salim, A., Benchohra, M., Nieto, J.J.: Controllability results for second-order integrodifferential equations with state-dependent...
    • 21. Browder, F.E., Gupta, G.P.: Topological degree and nonlinear mappings of analytic type in Banach spaces. J. Math. Anal. Appl. 26, 390–402...
    • 22. Deimling, K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985)
    • 23. Deimiling, K.: Multivalued Differential Equations. De Gruyter, Berlin, New York (1992)
    • 24. Ezzinbi, K., Ghnimi, S., Taoudi, M.A.: Existence results for some nonlocal partial integrodifferential equations without compactness or...
    • 25. Fall, M., Mane, A., Dehigbe, B., Diop, M.A.: Some results on the approximate controllability of impulsive stochastic integro-differential...
    • 26. Graef, J.R., Henderson, J., Ouahab, A.: Topological Methods for Differential Equations and Inclusions. CRC Press, Boca Raton (2018)
    • 27. Gorniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings, Mathematice and Its Applications, vol. 495. Kluwer Academic Publishers,...
    • 28. Gorniewicz, L.: Homological methods in fixed point theory of multivalued maps. Diss. Math. 129, 1–71 (1976)
    • 29. Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York (2003)
    • 30. Grimmer, R.: Resolvent opeators for integral equations in a Banach space. Trans. Am. Math. Soc. 273, 333–349 (1982)
    • 31. Grimmer, R., Pritchard, A.J.: Analytic resolvent operators for integral equations in a Banach space. J. Differ. Equ. 50, 234–259 (1983)
    • 32. Haddad, G., Lasry, J.-M.: Periodic solutions of functional-differential inclusions and fixed points of σ-selectionable correspondences....
    • 33. Hale, J., Kato, J.: Phase space for retarded equations with infinite delay. Funkcial. Ekvac. 21, 11–41 (1978)
    • 34. Hammad, H.A., Rashwan, R.A., De la Sen, M.: A fixed Point technique for solving an integrodifferential equation using mixed-monotone mappings....
    • 35. Hammad, H.A., De la Sen, M.: A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations....
    • 36. Hammad, H.A., De la Sen, M.: Generalized contractive mappings and related results in b-Metric like spaces with an application. Symmetry...
    • 37. Hao, X., Liu, L.:Mild solution of semilinear impulsive integro-differential evolution equation in Banach spaces. Math. Methods Appl. Sci....
    • 38. Henríquez, H.R., Pozo, J.C.: Existence of solutions of abstract non-autonomous second order integrodifferential equations. Bound. Value...
    • 39. Heris, A., Salim, A., Benchohra, M., Karapınar, E.: Fractional partial random differential equations with infinite delay. Results Phys....
    • 40. Hino, Y., Murakami, S., Naito, T.: Functional-differential equations with infinite delay. In: Stahy, S. (ed.) Lecture Notes in Mathematics,...
    • 41. Horvath, Ch.: Measure of non-compactness and multivalued mappings in complete metric topological spaces. J. Math. Anal. Appl. 108, 403–408...
    • 42. Hu, S.C., Lakshmikantham, V., Papageorgiou, N.S.: On the properties of the solution set of semilinear evolution inclusions. Nonlinear...
    • 43. Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear differential Inclusion in Banach Spaces, vol. 7....
    • 44. Kneser, H.: Über die Lösungen eines Systems gewöhnlicher Differentialgleichungen, das der Lipschitzschen Bedingung nicht genügt (German)....
    • 45. Krim, S., Salim, A., Abbas, S., Benchohra, M.: On implicit impulsive conformable fractional differential equations with infinite delay...
    • 46. Lasota, A., Opial, Z.: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol....
    • 47. Mokkedem, F.Z., Fu, X.: Approximate controllability of semi-linear neutral integro-differential systems with finite delay. Appl. Math....
    • 48. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44. Springer-Verlag, New York (1983)
    • 49. Petrusel, A.: Operatorial Inclusions. House of the Book of Science, Cluj Napoka (2002)
    • 50. Rezapour, S., Vijayakumar, K.S., Henriquez, H.R., Nisar, V., Shukla, A.: A Note on existence of mild solutions for second-order neutral...
    • 51. Salim, A., Benchohra, M., Lazreg, J.E.: Nonlocal k-generalized ψ-Hilfer impulsive initial value problem with retarded and advanced arguments....
    • 52. Salim, A., Benchohra, M., Lazreg, J.E., Karapınar, E.: On k-generalized ψ-Hilfer impulsive boundary value problem with retarded and advanced...
    • 53. Yosida, K.: Functional Analysis, vol. 6. Springer-Verlag, Berlin (1980)
    • 54. Zhou, Y., Wang, R.N., Peng, L.: Topological Structure of the Solution Set for Evolution Inclusions. Developments in Mathematics, vol....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno