Ir al contenido

Documat


Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fréchet spaces

  • Autores: Abdelhamid Bensalem, Abdelkrim Salim, Bashir Ahmad, Mouffak Benchohra
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 25, Nº. 2, 2023, págs. 231-250
  • Idioma: inglés
  • DOI: 10.56754/0719-0646.2502.231
  • Enlaces
  • Resumen
    • español

      Resumen En este artículo, investigamos la existencia de soluciones mild de una ecuación integrodiferencial no-instantánea vía operadores resolventes en el sentido de Grimmer en espacios de Fréchet. Usando la técnica de medidas de nocompacidad junto con el teorema de punto fijo de Darbo, presentamos criterios suficientes para asegurar la controlabilidad del problema dado. Se discute, además, un ejemplo ilustrativo.

    • English

      Abstract In this paper, we investigate existence of mild solutions to a non-instantaneous integrodifferential equation via resolvent operators in the sense of Grimmer in Fréchet spaces. Utilizing the technique of measures of noncompactness in conjunction with the Darbo’s fixed point theorem, we present sufficient criteria ensuring the controllability of the given problem. An illustrative example is also discussed.

  • Referencias bibliográficas
    • Abbas, S.,Benchohra, M.. (2015). Advanced Functional Evolution Equations and Inclusions. Springer. Cham, Switzerland.
    • Abbas, S.,Benchohra, M.,N’Guérékata, G. M.. (2020). Instantaneous and noninstantaneous impulsive integrodifferential equations in Banach spaces....
    • Ahmad, B.,Alsaedi, A.,Ntouyas, S. K.,Tariboon, J.. (2017). Hadamard-type Fractional Differential Equations, Inclusions and Inequalities. Springer....
    • Ahmad, B.,Henderson, J.,Luca, R.. (2021). Boundary Value Problems for Fractional Differential Equations and Systems. World Scientific. NJ,...
    • Baliki, A.,Benchohra, M.. (2015). Global existence and stability for neutral functional evolution equations. Rev. Roumaine Math. Pures Appl.....
    • Banaś, J.,Goebel, K.. (1980). Measure of Noncompactness in Banach Spaces. Marcel Dekker, Inc.. New York, USA.
    • Banaś, J.. (1981). Measures of noncompactness in the space of continuous tempered functions. Demonstratio Math.. 14. 127
    • Benchohra, M.,Bouazzaoui, F.,Karapinar, E.,Salim, A.. (2022). Controllability of second order functional random differential equations with...
    • Benkhettou, N.,Aissani, K.,Salim, A.,Benchohra, M.,Benchohra, M.,Tunc, C.. (2022). Controllability of fractional integro-differential equations...
    • Bensoussan, A.,Prato, G. Da,Delfour, M. C.,Mitter, S. K.. (1993). Representation and Control of Infinite Dimension Systems. Birkhäuser, Inc.....
    • Chen, P.,Li, Y.,Zhang, X.. (2021). Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families....
    • Curtain, R.,Zwart, H. J.. (1995). An Introduction to Infinite Dimensional Linear Systems Theory. Springer-Verlag. New-York, USA.
    • Desch, W.,Grimmer, R. C.,Schappacher, W.. (1984). Some considerations for linear integrodiffferential equations. J. Math. Anal. Appl.. 104....
    • Diop, A.,Diop, M.A.,Diallo, O.,Traoré, M. B.. (2020). Local attractivity for integro-differential equations with noncompact semigroups. Nonauton....
    • Diop, M.A.,Ezzinbi, K.,Ly, M. P.. (2022). Nonlocal problems for integrodifferential equation via resolvent operators and optimal control....
    • Dudek, S.. (2017). Fixed point theorems in Fréchet algebras and Fréchet spaces and applications to nonlinear integral equations. Appl. Anal....
    • Dudek, S.,Olszowy, L.. (2015). Continuous dependence of the solutions of nonlinear integral quadratic Volterra equation on the parameter....
    • Grimmer, R. C.. (1982). Resolvent opeators for integral equations in a Banach space. Trans. Amer. Math. Soc.. 273. 333
    • Hao, X.,Liu, L.. (2017). Mild solution of semilinear impulsive integro-differential evolution equation in Banach spaces. Math. Methods Appl....
    • Heris, A.,Salim, A.,Benchohra, M.,Karapınar, E.. (2022). Fractional partial random differential equations with infinite delay. Results in...
    • Hernández, E.,O’Regan, D.. (2013). On a new class of abstract impulsive differential equations. Proc. Amer. Math. Soc.. 141. 1641
    • Lasiecka, I.,Triggiani, R.. (1991). Exact controllability of semilinear abstract systems with application to waves and plates boundary control...
    • Li, X.,Yong, J.. (1995). Optimal Control Theory for Infinite Dimensional Systems. Systems & Control: Foundations & Applications. Birkhäuser...
    • Mönch, H.. (1980). Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal.....
    • Olszowy, L.,Wedrychowicz, S.. (2010). Mild solutions of semilinear evolution equation on an unbounded interval and their applications. Nonlinear...
    • Olszowy, L.. (2012). Fixed point theorems in the Fréchet space C(R+) and functional integral equations on an unbounded interval. Appl....
    • Simon, J.. (2017). Banach, Fréchet, Hilbert and Neumann spaces. Wiley. Hoboken, NJ, USA.
    • Waheed, H.,Zada, A.,Xu, J.. (2021). Well-posedness and Hyers-Ulam results for a class of impulsive fractional evolution equations. Math. Meth....
    • Xu, J.,Pervaiz, B.,Zada, A.,Shah, S. O.. (2021). Stability analysis of causal integral evolution impulsive systems on time scales. Acta Math....
    • Yosida, K.. (1980). Functional Analysis. Springer-Verlag. New York-Berlin, USA-Germany.
    • Zabczyk, J.. (1992). Mathematical Control Theory. Birkhäuser. Berlin, Germany.
    • Zhu, B.,Han, B.. (2022). Approximate controllability for mixed type non-autonomous fractional differential equations. Qual. Theory Dyn. Syst.....
    • Zhu, B.,Han, B.. (2020). Existence and uniqueness of mild solutions for fractional partial integro-differential equations. Mediterr. J. Math.....
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno