Ir al contenido

Documat


Ulam–Hyers–Rassias Stability of Neutral Functional Integrodifferential Evolution Equations with Non-instantaneous Impulses on an Unbounded Interval

  • Abdelhamid Bensalem [1] ; Abdelkrim Salim [2] ; Mouffak Benchohra [1]
    1. [1] Djillali Liabes University of Sidi Bel-Abbès
    2. [2] Djillali Liabes University of Sidi Bel-Abbès & Hassiba Benbouali University of Chlef
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 3, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we investigate the existence and Ulam–Hyers–Rassias stability results for a class of functional integrodifferential evolution equations with state-dependent delay and non-instantaneous impulsions on infinite intervals via resolvent operators in the sense of Grimmer. Our analysis is based on fixed point theorem with measures of noncompactness and Picard operators. Moreover, an illustrative example is considered to support our new results.

  • Referencias bibliográficas
    • 1. Abbas, S., Benchohra, M., N’Guérékata, G.M.: Instantaneous and noninstantaneous impulsive integrodifferential equations in Banach spaces....
    • 2. Aghajani, A., Bana´s, J., Sabzali, N.: Some generalizations of Darbo fixed point theorem and applications. Bull. Belg. Math. Soc. Simon...
    • 3. Arab, R., Allahyari, R., Shole Haghighi, A.: Construction of a measure of noncompactness on BC() and its application to Volterra integral...
    • 4. Bana`s, J.: Measures of noncompactness in the space of continuous tempered functions. Demonstr. Math. 14, 127–133 (1981)
    • 5. Baliki, A., Benchohra, M.: Global existence and stability for neutral functional evolution equations. Rev. Roum. Math. Pures Appl. LX(1),...
    • 6. Bana`s, J., Goebel, K.: Measures of Noncompactness in Banach Spaces, vol. 60. Marcel Dekker, New York (1980)
    • 7. Bai, L., Nieto, J.J.: Variational approach to differential equations with not instantaneous impulses. Appl. Math. Lett. 73, 44–48 (2017)
    • 8. Bainov, D., Simeonov, P.: Integral Inequalities and Applications, vol. 57. Springer, Berlin (1992)
    • 9. Benchohra, M., Bouazzaoui, F., Karapinar, E., Salim, A.: Controllability of second order functional random differential equations with...
    • 10. Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York...
    • 11. Benkhettou, N., Aissani, K., Salim, A., Benchohra, M., Tunc, C.: Controllability of fractional integrodifferential equations with infinite...
    • 12. Ben Makhlouf, A., Baleanu, D.: Finite time stability of fractional order systems of neutral type. Fractal Fract. 6, 289 (2022). https://doi.org/10.3390/fractalfract6060289
    • 13. Ben Makhlouf, A., Mchiri, L., Rhaima, M.: Ulam–Hyers–Rassias stability of stochastic functional differential equations via fixed point...
    • 14. Bouriah, S., Salim, A., Benchohra, M.: On nonlinear implicit neutral generalized Hilfer fractional differential equations with terminal...
    • 15. Caraballo, T., Mchiri, L., Rhaima, M.: Ulam–Hyers–Rassias stability of neutral stochastic functional differential equations. Stochastics...
    • 16. Diop, A., Diop, M.A., Diallo, O., Traoré, M.B.: Local attractivity for integro-differential equations with noncompact semigroups. Nonauton....
    • 17. Diop, M.A., Ezzinbi, K., Ly, M.P.: Nonlocal problems for integrodifferential equation via resolvent operators and optimal control. Differ....
    • 18. dos Santos, J.P.C.: On state-dependent delay partial neutral functional integro-differential equations. Appl. Math. Comput. 216, 1637–1644...
    • 19. Grimmer, R.C.: Resolvent operators for integral equations in a Banach space. Trans. Am. Math. Soc. 273, 333–349 (1982)
    • 20. Hale, J., Kato, J.: Phase space for retarded equations with infinite delay. Funkcial. Ekvac. 21, 11–41 (1978)
    • 21. Hao, X., Liu, L.:Mild solution of semilinear impulsive integro-differential evolution equation in Banach spaces. Math. Methods Appl. Sci....
    • 22. Heris, A., Salim, A., Benchohra, M., Karapinar, E.: Fractional partial random differential equations with infinite delay. Results Phys....
    • 23. Hernàndez, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141(5), 1641–1649 (2013)
    • 24. Hernandez, E., Sakthivel, R., Tanaka, A.: Existence results for impulsive evolution differential equations with state-dependent delay....
    • 25. Hino, Y., Murakami, S., Naito, T.: Functional-Differential Equations with Infinite Delay. In: Stahy, S. (ed.) Lecture Notes in Mathematics,...
    • 26. Horvath, Ch.: Measure of non-compactness and multivalued mappings in complete metric topological spaces. J. Math. Anal. Appl. 108, 403–408...
    • 27. Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27, 222–224 (1941)
    • 28. Inoan, D., Marian, D.: Semi-Hyers–Ulam–Rassias stability of a Volterra integro-differential equation of order I with a convolution type...
    • 29. Inoan, D., Marian, D.: Semi-Hyers–Ulam–Rassias stability via Laplace transform for an integrodifferential equation of the second order....
    • 30. Kirk, W.A., Sims, B.: Handbook of Metric Fixed Point Theory. Springer, Dordrecht (2001)
    • 31. Krim, S., Salim, A., Abbas, S., Benchohra, M.: On implicit impulsive conformable fractional differential equations with infinite delay...
    • 32. Kucche, K.D., Shikhare, P.U.: Ulam–Hyers stability for integro-differential equations in Banach spaces via Pachpatte inequality. Asian...
    • 33. Kucche, K.D., Shikhare, P.U.: Ulam stabilities for nonlinear Volterra delay integro-differential equations. J. Contemp. Math. Anal. 54,...
    • 34. Luo, D., Abdeljawad, T., Luo, Z.: Ulam–Hyers stability results for a novel nonlinear Nabla Caputo fractional variable-order difference...
    • 35. Luo, D., Alam, M., Zada, A., Riaz, U., Luo, Z.: Existence and stability of implicit fractional differential equations with Stieltjes boundary...
    • 36. Luo, D., Luo, Z.: Existence and Hyers–Ulam stability results for a class of fractional order delay differential equations with non-instantaneous...
    • 37. Luo, D., Luo, Z., Qiu, H.: Existence and Hyers–Ulam stability of solutions for a mixed fractional-order nonlinear delay difference equation...
    • 38. Luo, D., Shah, K., Luo, Z.: On the novel Ulam–Hyers stability for a class of nonlinear ψ-Hilfer fractional differential equation with...
    • 39. Mchiri, L., Ben Makhlouf, A., Baleanu, D., Rhaima, M.: Finite-time stability of linear stochastic fractional-order systems with time delay....
    • 40. Otrocol, D.: Ulam stabilities of differential equations with abstract Volterra operator in a Banach space. Nonlinear Funct. Anal. Appl....
    • 41. Otrocol, D., Ilea, V.: Ulam stability for a delay differential equation. Cent. Eur. J. Math. 11, 1296–1303 (2013)
    • 42. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44. Springer, New York (1983)
    • 43. Pierri, M., O’Regan, D., Rolnik, V.: Existence of solutions for semi-linear abstract differential equations with non instantaneous impulses....
    • 44. Pruss, J.: On resolvent operators for linear integrodifferentiat equations of Volterra type. J. Integr. Equ. 5, 211–236 (1983)
    • 45. Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)
    • 46. Refaai, D.A., El-Sheikh, M.M.A., Ismail, G.A.F., Abdalla, B., Abdeljawad, T.: Hyers–Ulam stability of impulsive Volterra delay integro-differential...
    • 47. Rus, I.A.: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca (2001)
    • 48. Rus, I.: Ulam stability of ordinary differential equations. Stud. Univ. Babes-Bolyai Math. 54, 125–133 (2009)
    • 49. Salim, A., Benchohra, M., Graef, J.R., Lazreg, J.E.: Boundary value problem for fractional generalized Hilfer-type fractional derivative...
    • 50. Salim, A., Benchohra, M., Karapınar, E., Lazreg, J.E.: Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential...
    • 51. Salim, A., Benchohra, M., Lazreg, J.E.: Nonlocal k-generalized ψ-Hilfer impulsive initial value problem with retarded and advanced arguments....
    • 52. Salim, A., Benchohra, M., Lazreg, J.E., Henderson, J.: Nonlinear implicit generalized Hilfer-type fractional differential equations with...
    • 53. Sakthivel, R., Choi, Q.H., Anthoni, S.M.: Controllability result for nonlinear evolution integrodifferential systems. Appl. Math. Lett....
    • 54. Ulam, S.M.: Problems in Modern Mathematics. Wiley, New York (1964)
    • 55. Wang, J.R., Feckan, M.: Non-Instantaneous Impulsive Differential Equations, Basic Theory And Computation. IOP Publishing Ltd., Bristol...
    • 56. Wang, J., Lv, L., Zhou, Y.: Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electr. J....
    • 57. Wang, J., Luo, D., Luo, Z., Zada, A.: Ulam–Hyers stability of Caputo-type fractional stochastic differential equations with time delays....
    • 58. Wang, J., Luo, D., Zhu, Q.: Ulam–Hyers stability of caputo type fuzzy fractional differential equations with time-delays. Chaos Solitons...
    • 59. Yang, D., Wang, J.: Integral boundary value problems fornonlinear non-instataneous impulsive differential equations. J. Appl. Math. Comput....
    • 60. Yu, X., Wang, J.: Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces. Commun. Nonlinear Sci....
    • 61. Zada, A., Faisal, S., Li, Y.: On the Hyers–Ulam stability of first-order impulsive delay differential equations. J. Funct. Spaces 2016,...
    • 62. Zada, A., Shah, S.O.: Hyers–Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses....
    • 63. Zeidler, E.: Nonlinear Functionnal Analysis and its Applications, Fixed Point Theorems. Springer, New York (1990)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno