Ir al contenido

Documat


Solitary Waves and Periodic Waves in a Perturbed KdV Equation

  • Li, Hong [1] ; Sun Hongquan [1] ; Zhu, Wenjing [2]
    1. [1] Jiujiang University

      Jiujiang University

      China

    2. [2] China Jiliang University

      China Jiliang University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 3, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00418-w
  • Enlaces
  • Resumen
    • In this paper, we consider a perturbed Korteweg–de Vries (KdV) equation with weak dissipation and Marangoni effects. Main attention is focused on the existence conditions of periodic and solitary wave solutions of the perturbed KdV equation. Based on bifurcation theory of dynamic system and geometric singular perturbation method, the parameter conditions and wave speed conditions for the existence of one periodic solution, one solitary solution and the coexistence of a solitary solution and infinite number of periodic solutions are given. By using Chebyshev criterion to analyze the ratio of Abelian integrals, the monotonicity of wave speed is proved, and the upper and lower bounds of wave speed are obtained.

  • Referencias bibliográficas
    • 1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1992)
    • 2. Ablowitz, M. J., Segur, H.: Solitons and the Inverse Scattering Transform, Society for Industrial and Applied Mathematics (1981)
    • 3. Aspe, H., Depassier, M.C.: Evolution equtaion of surface waves in a convecting fluid. Phys. Rev. A 411, 3125–3128 (1991)
    • 4. Busse, F.H.: Non-linear properties of thermal convection. Rep. Prog. Phys. 41, 1929–1967 (1978)
    • 5. Carr, J., Chow, S.-N., Hale, J.K.: Abelian integrals and bifurcation theory. J. Differ. Equ. 59, 413–436 (1985)
    • 6. Chen, A., Guo, L., Deng, X.: Existence of solitary waves and periodic waves for a perturbed generalized bbm equation. J. Differ. Equ. 261,...
    • 7. Chow, S.-N., Sanders, J.A.: On the number of critical points of the period. J. Differ. Equ. 64, 51–66 (1986)
    • 8. Fan, X., Tian, L.: The existence of solitary waves of singularly perturbed mkdv-ks equation. Chaos Solitons Fractals 26, 1111–1118 (2005)
    • 9. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. Chaos Soliton Fractals 31, 53–98 (1979)
    • 10. Garazo, A.N., Velarde, M.G.: Dissipative Korteweg–de Vries description of marangonibenardoscillatory convection. Phys. Fluids A 3(10),...
    • 11. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19, 1095–1097...
    • 12. Grau, M., Maenosas, F., Villadelprat, J.: A Chebyshev criterion for Abelian integrals. Trans. Am. Math. Soc. 363, 109–129 (2011)
    • 13. Gu, C., Hu, H., Zhou, Z.: Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry. Springer, New York...
    • 14. Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, Cambridge (2000)
    • 15. Janiaud, B., Pumir, A., Bensimon, D., et al.: The eckhaus instability for traveling waves. Phys. D 55, 269–286 (1992)
    • 16. Lou, S., Huang, G., Ruan, H.: Exact solitary waves in a convecting fluid. J. Phys. A 24, 587–590 (1991)
    • 17. Ma, L.L., Li, H., Ma, J.: Single-peak solitary wave solutions for the generalized Korteweg–de Vries equation. Nonlinear Dyn. 79(1), 349–357...
    • 18. Mansour, M.B.A.: Existence of traveling wave solutions for a nonlinear dissipative-dispersive equation. Appl. Math. Mech. 30(4), 513–516...
    • 19. Nekorkin, V., Velarde, M.G.: Solitary waves, soliton bound states and chaos in a dissipative Korteweg– de Vries equation. Int. J. Bifurc....
    • 20. Ogawa, T.: Travelling wave solutions to a perturbed Korteweg–de Vries equation. Hiroshima Math. J. 24, 401–422 (1994)
    • 21. Porubov, A.V.: Exact travelling wave solutions of nonlinear evolution equation of surface waves in a convecting fluid. J. Phys. A 26,...
    • 22. Sun, X., Yu, P.: Periodic traveling waves in a generalized BBM with weak backward diffusion and dissipation terms. Discrete Contin. Dyn....
    • 23. Tang, Y., Xu, W., Shen, J.W., Gao, L.: The existence of solitary waves of singularly perturbed gardner equation. Chaos Soliton Fractals...
    • 24. Velarde, M.G., Nekorkin, V., Maksimov, A.: Further results on the evolution of solitary waves and their bound states of a dissipative...
    • 25. Zhuang, K., Du, Z., Lin, X.: Solitary waves solutions of singularly perturbed higher-order kdv equation via geometric singular perturbation...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno