Ir al contenido

Documat


On the Existence of Solitary Wave Solutions for Perturbed Degasperis-Procesi Equation

  • Xu, Guoan [1] ; Zhang, Yi [2]
    1. [1] Zhejiang Normal University

      Zhejiang Normal University

      China

    2. [2] Huaqiao University

      Huaqiao University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 3, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00519-0
  • Enlaces
  • Resumen
    • The Degasperis–Procesi (DP) equation is a significant model of shallow-water waves, which has been well investigated in the current study. Notably, the existence of solitary wave solutions without perturbation has been first proved. However, the persistence of solitary wave solutions of the perturbed DP equation by employing the geometric singular perturbation theory and the Melnikov method has been analyzed. Therefore, the perturbed DP equation possesses a solitary wave solution from the demonstration of having a homoclinic orbit.

  • Referencias bibliográficas
    • 1. Degasperis, A., Procesi, M.: Asymptotic integrability, in Symmetry and Perturbation Theory. World Sci. Publ., River Edge, NJ (1999)
    • 2. Yin, Z.: Global weak equation for a new periodic integrable equation with peakon solutions. J. Funct. Anal. 212, 182–194 (2004)
    • 3. Coclite, G., Karlsen, K.: Periodic solutions of the Degasperis–Procesi equation: Well-posedness and asymptotics. J. Funct. Anal. 268, 1053–1077...
    • 4. Li, J., Zhang, Y.: Exact loop solutions, cusp solutions, solitary wave solutions and periodic wave solutions for the special CH-DP equation....
    • 5. Lenells, J.: Traveling wave solutions of the Degasperis–Procesi equation. J. Math. Anal. Appl. 306, 72–82 (2005)
    • 6. Zhang, Y., Yang, J., Chow, K., et al.: Solitons, breathers and rogue waves for the coupled Fokas-Lenells system via Darboux transformation....
    • 7. Liang, J., Li, J., Zhang, Y.: Bifurcations and exact solutions of generalized two-component peakon type dual systems. Int. J. Bifurc. Chaos...
    • 8. Yu, L., Tian, L.: Loop solutions, breaking kink (or anti-kink) wave solutions, solitary wave solutions and periodic wave solutions for...
    • 9. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equ. 31, 53–98 (1979)
    • 10. Jones, C.K.R.T.: Geometrical singular perturbation theory. In: Johnson, R. (ed.) Lecture Notes in Mathematics: Dynamical systems, vol....
    • 11. Wiggins, S., Mazel, D.S.: Introduction to applied nonlinear dynamical systems and chaos. Springer, Berlin (1990)
    • 12. Han, M.: Bifurcation theory and periodical solution of dynamic system. Science Press, Beijing (2002)
    • 13. Ogawa, T.: Traveling wave solutions to a perturbed Korteweg–de Vries equation. Hiroshima Math. J. 24, 401–422 (1994)
    • 14. Zhang, L., Han, M., Zhang, M., Khalique, C.: A new type of wave solitarysolution of the mKdV equation under singular perturbations. Int....
    • 15. Chen, A., Guo, L., Deng, X.: Existence of solitary waves and periodic waves for a perturbed generalized BBM equation. J. Diff. Equ. 261,...
    • 16. Zhu, K., Wu, Y., Yu, Z., Shen, J.: New solitary wave solutions in a perturbed generalized BBM equation. Nonlinear Dyn. 97, 2413–2423 (2019)
    • 17. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa–Holm equation via a geometric approach. J. Funct....
    • 18. Cheng, F., Li, J.: Geometric singular perturbation analysis of Degasperis–Procesi equation with distributed delay. Disc. Contin. Dyn....
    • 19. Ge, J., Du, Z.: The solitary wave solutions of the nonlinear perturbed shallow water wave model. Appl. Math. Lett. 103, 106202 (2020)
    • 20. Deng, S., Guo, B., Wang, T.: Travelling wave solutions of a generalized Camassa–Holm–Degasperis– Procesi equation. Sci. China Math. 54,...
    • 21. Shen, J., Xu, W.: Smooth and non-smooth travelling wave solutions of generalized Degasperis–Procesi equation. Appl. Math. Comput. 182,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno