Ir al contenido

Documat


Nine Limit Cycles Around a Weak Focus in a Class of Three-Dimensional Cubic Kukles Systems

  • Yuting Ouyang [1] ; Dongping He [2] ; Wentao Huang [1]
    1. [1] Guangxi Normal University

      Guangxi Normal University

      China

    2. [2] Sichuan University

      Sichuan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we study the bifurcation of limit cycles, centers, and isochronous centers for a class of three-dimensional Kukles systems of degree 3. Through calculating the singular point quantities, we obtain a necessary condition for the origin to be a center, then the Darboux integrability theory is used to prove that the necessary condition is also sufficient. Then, we demonstrate that the origin is an isochronous center under the obtained center condition. Finally, we determine that the highest order of the origin to be a weak focus is ten, while the maximum number of small-amplitude limit cycles bifurcating from this weak focus is nine. Moreover, we show that this maximum number of 9 can be realized. It is worthwhile to say that this number is also a new lower bound on the number of limit cycles bifurcating from the single weak focus for three-dimensional cubic polynomial systems.

  • Referencias bibliográficas
    • 1. Bautin, N.N.: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center...
    • 2. Buicˇa, A., García, I.A., Maza, S.: Existence of inverse Jacobi multipliers around Hopf points in R3: Emphasis on the center problem. J....
    • 3. Buicˇa, A., García, I.A., Maza, S.: Multiple Hopf bifurcation in R3 and inverse Jacobi multipliers. J. Differ. Equ. 256, 310–325 (2014)
    • 4. Carr, J.: Applications of Centre Manifold Theory. Springer, New York (2012)
    • 5. Christopher, C.J., Lloyd, N.G.: On the paper of Jin and Wang concerning the conditions for a centre in certain cubic systems. Bull. Lond....
    • 6. Chen, L., Wang, M.: The relative position and the number of limit cycles of a quadratic differential systems. Acta Math. Sci. 22, 751–758...
    • 7. Darboux, G.: Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges). Bull. Sci. Math. 2ème...
    • 8. Dulac, H.: Détermination et intégration d’une certaine classe d’equations différentielles ayant pour point singulier un centre. Bull. Am....
    • 9. Du, C., Liu, Y., Huang, W.: A class of three-dimensional quadratic systems with ten limit cycles. Int. J. Bifurc. Chaos Appl. Sci. Eng....
    • 10. Du, C., Wang, Q., Huang, W.: Three-dimensional Hopf bifurcation for a class of cubic Kolmogorov model. Int. J. Bifurc. Chaos Appl. Sci....
    • 11. Du, C., Wang, Q., Liu, Y.: Limit cycles bifurcations for a class of 3-dimensional quadratic systems. Acta Appl. Math. 136, 1–18 (2015)
    • 12. Gu, J., André, Z., Huang, W.: Bifurcation of limit cycles and isochronous centers on center manifolds for a class of cubic Kolmogorov...
    • 13. Giné, J., Gouveia, L.F.S., Torregrosa, J.: Lower bounds for the local cyclicity for families of centers. J. Differ. Equ. 275, 309–331...
    • 14. Gouveia, L.F.S., Queiroz, L.: Lower bounds for the cyclicity of centers of quadratic three-dimensional systems. J. Math. Anal. Appl. 530,...
    • 15. Giné, J., Valls, C.: Center problem in the center manifold for quadratic differential systems in R3. J. Symb. Comput. 73, 250–267 (2016)
    • 16. Guo, L., Yu, P., Chen, Y.: Twelve limit cycles in 3D quadratic vector fields with Z3 symmetry. Int. J. Bifurc. Chaos Appl. Sci. Eng. 28,...
    • 17. Guo, L., Yu, P., Chen, Y.: Bifurcation analysis on a class of three-dimensional quadratic systems with twelve limit cycles. Appl. Math....
    • 18. Hilbert, D.: Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902)
    • 19. Huang, W., Gu, J., Wang, Q.: Limit cycles and isochronous centers of three dimensional differential systems. J. Guangxi Norm. Univ. Nat....
    • 20. Huang, W., Wang, Q., Chen, A.: Hopf bifurcation and the centers on center manifold for a class of three-dimensional circuit system. Math....
    • 21. Kukles, I.S.: Necessary and sufficient conditions for the existence of centre. Dokl. Akad. Nauk USSR 42, 160–163 (1944)
    • 22. Li, J.: Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Int. J. Bifurc. Chaos Appl. Sci. Eng. 13, 47–106 (2003)
    • 23. Liu, L., Aybar, O.O., Romanovski, V.G., Zhang, W.: Identifying weak foci and centers in the Maxwell– Bloch system. J. Math. Anal. Appl....
    • 24. Liu, L., Gao, B., Xiao, D., Zhang, W.: Identification of focus and center in a 3-dimensional system. Discrete Contin. Dyn. Syst. Ser....
    • 25. Liu, J., Huang, W., Liu, H.: New lower bound of limit cycles for a class of three-dimensional cubic systems. J. Guangxi Norm. Univ. Nat....
    • 26. Li, J., Liu, Y.: New results on the study of Zq -equivariant planar polynomial vector fields. Qual. Theory Dyn. Syst. 9, 167–219 (2010)
    • 27. Li, C., Liu, C., Yang, J.: A cubic system with thirteen limit cycles. J. Differ. Equ. 246, 3609–3619 (2009)
    • 28. Llibre, J., Makhlouf, A., Badi, S.: 3-dimensional Hopf bifurcation via averaging theory of second order. Discrete Contin. Dyn. Syst. Ser....
    • 29. Llibre, J., Buzzi, C.A., da Silva, P.R.: 3-dimensional Hopf bifurcation via averaging theory. Discrete Contin. Dyn. Syst. Ser. A 17, 529–540...
    • 30. Lu, J., Wang, C., Huang, W., Wang, Q.: Local bifurcation and center problem for a more generalized Lorenz system. Qual. Theory Dyn. Syst....
    • 31. Llibre, J., Zhang, X.: Darboux theory of integrability in Cn taking into account the multiplicity. J. Differ. Equ. 246, 541–551 (2009)
    • 32. Mahdi, A.: Center problem for third-order ODEs. Int. J. Bifurc. Chaos Appl. Sci. Eng. 23, 1350078 (2013)
    • 33. Poincaré, H.: Mémoire sur les courbes définies par les équation différentielle. J. Math. Pures. Appl. 7, 375–422 (1881)
    • 34. Pearson, J., Lloyd, N.G.: Kukles revisited: advances in computing techniques. Comput. Math. Appl. 60, 2797–2805 (2010)
    • 35. Prohens, R., Torregrosa, J.: New lower bounds for the Hilbert numbers using reversible centers. Nonlinearity 32, 331–355 (2019)
    • 36. Sadovskii, A.P.: Cubic systems of nonlinear oscillations with seven limit cycles. Differ. Equ. 39, 505– 516 (2003)
    • 37. Sánchez-Sánchez, I., Torregrosa, J.: Hopf bifurcation in 3-dimensional polynomial vector fields. Commun. Nonlinear Sci. Numer. Simul....
    • 38. Shi, S.: A concrete example of the existence of four limit cycles for plane quadratic systems. Sci. Sin. 23, 153–158 (1980)
    • 39. Sadovskii, A.P.: Solution of the center and focus problem for a cubic system of nonlinear oscillations (in Russian). Differ. Uravn. 33,...
    • 40. Tian, Y., Yu, P.: Seven limit cycles around a focus point in a simple three-dimensional quadratic vector field. Int. J. Bifurc. Chaos...
    • 41. Wu, Y., Chen, G., Yang, X.: Kukles system with two fine foci. Ann. Differ. Equ. 15, 422–437 (1999)
    • 42. Wang, Q., Huang, W.: The equivalence between singular point quantities and Liapunov constants on center manifold. Adv. Differ. Equ. 1,...
    • 43. Wang, Q., Huang, W., Li, B.: Limit cycles and singular point quantities for a 3D Lotka–Volterra system. Appl. Math. Comput. 217, 8856–8859...
    • 44. Wang, Q., Liu, Y., Chen, H.: Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems. Bull. Sci. Math. 134, 786–798...
    • 45. Wang, Q., Li, J., Huang, W.: Existence of multiple limit cycles in Chen system. J. Appl. Anal. Comput. 2, 441–447 (2012)
    • 46. Yu, P., Corless, R.: Symbolic computation of limit cycles associated with Hilbert’s 16th problem. Commun. Nonlinear Sci. Numer. Simul....
    • 47. Yu, P., Han, M.: Four limit cycles from perturbing quadratic integrable systems by quadratic polynomials. Int. J. Bifurc. Chaos Appl....
    • 48. Yu, P., Han, M.: Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation. Appl. Math....
    • 49. Yu, P., Tian, Y.: Twelve limit cycles around a singular point in a planar cubic-degree polynomial system. Commun. Nonlinear Sci. Numer....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno