Ir al contenido

Documat


Local Bifurcation and Center Problem for a More Generalized Lorenz System

  • Jingping Lu [3] ; Chunyong Wang [1] ; Wentao Huang [2] ; Qinlong Wang [3]
    1. [1] Hezhou University

      Hezhou University

      China

    2. [2] Guangxi Normal University

      Guangxi Normal University

      China

    3. [3] Guilin University of Electronic Technology & Guilin University of Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, Hopf bifurcation and center problem are investigated for a class of more generalized Lorenz systems, which are Z2 symmetric and quadratic threedimensional systems. Firstly, the singular point quantities of one equilibrium are calculated carefully, and the two symmetric fourth-order weak foci are found. Secondly, the corresponding invariant algebraic surfaces are figured out, and the center conditions on a center manifold are determined. In this way it is proved that there exist at most eight small limit cycles from the two symmetric equilibria via a Hopf bifurcation, which is a new result for general Lorenz models. At the same time, when the center conditions are satisfied, the complete classification of Darboux invariants is established for this system.

  • Referencias bibliográficas
    • 1. Algaba, A., Dominguez-Moreno, M.C., Merino, M., Rodriguez-Luis, A.J.: Study of the Hopf Bifurcation in the Lorenz. Chen Lü Syst. Nonlinear...
    • 2. Bautin, N.: On the number of limit cycles appearing from an equilibrium point of the focus or center type under varying coefficients. Matem....
    • 3. Barreira, L., Llibre, J., Valls, C.: Bifurcation of limit cycles from a 4-dimensional center in Rm in resonance 1 : N. J. Math. Anal. Appl....
    • 4. Bérard, P., Helffer, B.: Sturm’s theorem on zeros of linear combinations of eigenfunctions. Expo. Math. 38(1), 27–50 (2020)
    • 5. Buicˇa, A., García, I.A., Maza, S.: Existence of inverse Jacobi multipliers around Hopf points in R3: emphasis on the center problem. J....
    • 6. Buicˇa, A., García, I.A., Maza, S.: Multiple Hopf bifurcation in R3 and inverse Jacobi multipliers. J. Differ. Equ. 256, 310–325 (2014)
    • 7. Du, C., Liu, Y., Huang, W.: A class of three-dimensional quadratic systems with ten limit cycles. Int. J. Bifurc. Chaos 26, 1650149-1-1650149–11...
    • 8. Edneral, V.F., Mahdi, A., Romanovskic, V.G., Shafer, D.S.: The center problem on a center manifold in R3. Nonlinear Anal-Real. 75, 2614–2622...
    • 9. García, I.A.,Maza, S., Shafer, D.S.: Cyclicity of polynomial nondegenerate centers on center manifolds. J. Differ. Equ. 265, 5767–5808...
    • 10. García, I.A., Maza, S., Shafer, D.S.: Center cyclicity of Lorenz. Chen and Lü Syst. Nonlinear AnalTheor. 188, 362–376 (2019)
    • 11. Guo, L., Yu, P., Chen, Y.: Twelve limit cycles in 3d quadratic vector fields with Z3-symmetry. Int. J. Bifurc. Chaos 28, 1850139-1-1850139–14...
    • 12. Guo, L., Yu, P., Chen, Y.: Bifurcation analysis on a class of three-dimensional quadratic systems with twelve limit cycles. Appl. Math....
    • 13. Han, M., Yu, P.: Normal forms, Melnikov functions and bifurcations of limit cycles. Springer, New York (2012)
    • 14. Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)
    • 15. Hilbert, D.: Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902)
    • 16. Huang, W., Wang, Q., Chen, A.: Hopf bifurcation and the centers on center manifold for a class of three-dimensional Circuit system. Math....
    • 17. Li, J.: Hilbert’s 16th problem and bifurcations of plannar polynomial vector fields. Int. J. Bifurc. Chaos 13, 47–106 (2003)
    • 18. Li, J., Liu, Y.: New results on the study of Zq -equivariant planar polynomial vector fields. Qual. Theory Dyn. Syst. 9, 167–219 (2010)
    • 19. Liu, Y., Li, J.: Theory of values of singular point in complex autonomous differential system. Sci. China Ser. A. 33, 10–24 (1990)
    • 20. Llibre, J., Makhlouf, A., Badi, S.: 3-dimensional Hopf bifurcation via averaging theory of second order. Discrete Cont. Dyn-A. 25, 1287–1295...
    • 21. Llibre, J., Zhang, X.: Invariant algebraic surfaces of the Lorenz system. J. Math. Phys. 43, 1622–1645 (2002)
    • 22. Llibre, J., Zhang, X.: Rational first integrals in the Darboux theory of integrability in Cn. Bull. Sci. Math. 134, 189–195 (2010)
    • 23. Liu, L., Aybar, O.O., Romanovski, V.G., Zhang, W.: Identifying weak foci and centers in the MaxwellBloch system. J. Math. Anal. Appl....
    • 24. Liu, L., Gao, B., Xiao, D., Zhang, W.: Identification of focus and center in a 3-dimensional system. Discrete Cont. Dyn-B. 19, 485–522...
    • 25. Mello, L.F., Coelho, S.F.: Degenerate Hopf bifurcations in the Lü system. Phys. Lett. A 373, 1116–1120 (2009)
    • 26. Romanovski, V.G., Shafer, D.S.: Centers and limit cycles in polynomial systems of ordinary differential equations. Adv. Stud. Pure Math....
    • 27. Tian, Y., Yu, P.: An explicit recursive formula for computing the normal form and center manifold of n-dimensional differential systems...
    • 28. Wang, Q., Liu, Y., Chen, H.: Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems. Bull. Sci. Math. 134, 786–798...
    • 29. Wang, Q., Huang, W., Feng, J.: Multiple limit cycles and centers on center manifolds for Lorenz system. Appl. Math. Comput. 238, 281–288...
    • 30. Wu, K., Zhang, X.: Darboux polynomials and rational first integrals of the generalized Lorenz systems. Bull. Sci. Math. 136, 291–308 (2012)
    • 31. Yu, P., Han, M.: Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation. Appl. Math....
    • 32. Yu, P., Tian, Y.: Twelve limit cycles around a singular point in a planar cubic-degree polynomial system. Commun. Nonlinear Sci. Numer....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno