Ir al contenido

Documat


Bifurcation of Limit Cycles and Isochronous Centers on Center Manifolds for a Class of Cubic Kolmogorov Systems in R3

  • Jieping Gu [2] ; André Zegeling [1] ; Wentao Huang [1]
    1. [1] Guangxi Normal University

      Guangxi Normal University

      China

    2. [2] Guangxi Vocational Normal University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Our work is concerned with the number of limit cycles and isochronous center conditions for a class of three-dimensional cubic Kolmogorov systems with an equilibrium point in the positive octant where the system has biological meaning. A formal series method of computing singular point values (equivalent to focal values) is applied to investigate the Hopf bifurcation and center problem on center manifolds for the Kolmogorov system. Using this we derive two sets of conditions for the equilibrium point to be a center on a center manifold for the system, and prove that at most seven small-amplitude limit cycles can be bifurcated from an isolated positive equilibrium point. We prove that seven limit cycles can be created in this way, obtaining a new result on the number of limit cycles in three-dimensional cubic Kolmogorov systems. Moreover, two sets of necessary conditions for the existence of an isochronous center on the center manifold for such systems are obtained by the computation of period constants. The Darboux theory of linearizability is applied to show the sufficiency of the conditions.

  • Referencias bibliográficas
    • 1. Algaba, A., Domínguez-Moreno, M.C., Merino, M., Rodríguez-Luis, A.J.: Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems....
    • 2. Algaba, A., García, C., Giné, J.: Nondegenerate centers and limit cycles of cubic Kolmogorov systems. Nonlinear Dyn. 91, 487–496 (2018)
    • 3. Buica, A., Garca, I., Maza, S.: Multiple Hopf bifurcation in R3 and inverse Jacobi multipliers. J. Differ. Equ. 256, 310–325 (2014)
    • 4. Chen, X., Huang, W., Romanovski, V.G., Zhang, W.: Linearizability and local bifurcation of critical periods in a cubic Kolmogorov system....
    • 5. Du, C., Huang, W.: Center-focus problem and limit cycles bifurcations for a class of cubic Kolmogorov model. Nonlinear Dyn. 72, 197–206...
    • 6. Du, C., Liu, Y., Huang, W.: Limit cycles bifurcations for a class of Kolmogorov model in symmetrical vector field. Int. J. Bifur. Chaos...
    • 7. Du, C., Liu, Y., Huang, W.: A class of three-dimensional quadratic systems with ten limit cycles. Int. J. Bifur. Chaos 26, 1650149 (2016)
    • 8. Du, C., Wang, Q., Huang, W.: Three-dimensional Hopf bifurcation for a class of cubic Kolmogorov model. Int. J. Bifur. Chaos 24, 1450036...
    • 9. Edneral, V.F., Mahdi, A., Romanovski, V.G., Shafer, D.S.: The center problem on a center manifold in R3. Nonlinear Anal. Real World Appl....
    • 10. Giné, J.: Isochronous foci for analytic differential systems. Int. J. Bifur. Chaos 13, 1617–1623 (2003)
    • 11. Giné, J.: On some open problems in planar differential systems and Hilbert’s 16th problem. Chaos Soli. Fra. 31, 1118–1134 (2007)
    • 12. Giné, J., Gouveia, L.F.S., Torregrosa, J.: Lower bounds for the local cyclicity for families of centers. J. Differ. Equ. 275, 309–331...
    • 13. García, I.A., Maza, S., Shafer, D.S.: Center cyclicity of Lorenz, Chen and Lü systems. Nonlinear Anal. 188, 362–376 (2019)
    • 14. Giné, J., Valls, C.: Center problem in the center manifold for quadratic differential systems in R3. J. Symbolic Comput. 73, 250–267 (2016)
    • 15. Gyllenberg, M., Yan, P.: Four limit cycles for a 3D competitive Lotka–Volterra system with a heteroclinic cycle. Comput. Math. Appl. 58,...
    • 16. Guo, L., Yu, P., Chen, Y.: Bifurcation analysis on a class of three-dimensional quadratic systems with twelve limit cycles. Appl. Math....
    • 17. Hilbert, D.: Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902)
    • 18. Hirsch, M.W.: Systems of differential equations that are competitive or cooperative. V: convergence in 3-dimensional systems. J. Differ....
    • 19. He, D., Huang, W., Wang, Q.: Small amplitude limit cycles and local bifurcation of critical periods for a quartic Kolmogorov system. Qual....
    • 20. Huang, W., Wang, Q., Chen, A.: Hopf bifurcation and the centers on center manifold for a class of three-dimensional Circuit system. Math....
    • 21. Ilyashenko, Y.: Centennial history of Hilbert’s 16th problem. Bull. Amer. Math. Soc. 39, 301–355 (2002)
    • 22. Kolmogorov, A.: Sulla teoria di Volterra della lotta per l’esistenza. Giornale dell’ Istituto Italiano degli Attuari 7, 74–80 (1936)
    • 23. Liu, T., Du, C., Huang, W.: Double bifurcation for a cubic Kolmogorov model. Nonlinear Dyn. 90, 325–338 (2017)
    • 24. Liu, Y., Huang, W.: A new method to determine isochronous center conditions for polynomial differential systems. Bull. Sci. Math. 127,...
    • 25. Liu, Y., Li, J.: Theory of values of singular point in complex autonomous differential system. Sci. China Ser. A 33, 10–24 (1990)
    • 26. Li, J.: Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Int. J. Bifur. Chaos 13, 47–106 (2003)
    • 27. Lu, Z., Luo, Y.: Two limit cycles in three-dimensional Lotka–Volterra systems. Comput. Math. Appl. 44, 51–66 (2002)
    • 28. Lu, Z., Luo, Y.: Three limit cycles for a three-dimensional Lotka–Volterra competitive system with a heteroclinic cycle. Comput. Math....
    • 29. Li, C., Liu, C., Yang, J.: A cubic system with thirteen limit cycles. J. Differ. Equ. 246, 3609–3619 (2009)
    • 30. Li, J., Liu, Y.: New results on the study of Zq -equivariant planar polynomial vector fields. Qual. Theory Dyn. Syst. 9, 167–219 (2010)
    • 31. Li, F., Liu, Y., Liu, Y., Yu, P.: Complex isochronous centers and linearization transformations for cubic Z2-equivariant planar systems....
    • 32. Llibre, J., Makhlouf, A., Badi, S.: 3-dimensional Hopf bifurcation via averaging theory of second order. Discr. Contin. Dyn. Syst. 25,...
    • 33. Lloyd, N.G., Pearson, J.M., Sáez, E., Szántó, I.: Limit cycles of a cubic Kolmogorov system. Appl. Math. Lett. 9, 15–18 (1996)
    • 34. Lloyd, N.G., Pearson, J.M., Sáez, E., Szántó, I.: A cubic Kolmogorov system with six limit cycles. Comput. Math. Appl. 44, 445–455 (2002)
    • 35. Llibre, J., Romanovski, V.G.: Isochronicity and linearizability of planar polynomial Hamiltonian systems. J. Differ. Equ. 259, 1649–1662...
    • 36. Lü, J., Zhou, T., Chen, G., Zhang, S.: Local bifurcation of the Chen system. Int. J. Bifur. Chaos 12, 2257–2270 (2002)
    • 37. Llibre, J., Zhang, X.: Darboux theory of integrability in Cn taking into account the multiplicity. J. Differ. Equ. 246, 541–551 (2009)
    • 38. Poincaré, H.: Mémoire sur les courbes définies par une équation différentielle (I). J. Math. Pures Appl. 7, 357–422 (1881)
    • 39. Poincaré, H.: Mémoire sur les courbes définies par une équation différentielle (II). J. Math. Pures Appl. 8, 251–296 (1882)
    • 40. Poincaré, H.: Sur les courbes définies par les équations différentielles (III). J. Math. Pures Appl. 1, 167–224 (1885)
    • 41. Poincaré, H.: Sur les courbes définies par les équations différentielles (IV). J. Math. Pures Appl. 2, 155–217 (1886)
    • 42. Sáez, E., Szántó, I.: One-parameter family of cubic Kolmogorov system with an isochronous center. Collect. Math. 48, 297–301 (1997)
    • 43. Tian, Y., Yu, P.: An explicit recursive formula for computing the normal form and center manifold of n-dimensional differential systems...
    • 44. Tian, Y., Yu, P.: Seven limit cycles around a focus point in a simple three-dimensional quadratic vector field. Int. J. Bifur. Chaos 24,...
    • 45. Wang, Q., Huang, W., Li, B.: Limit cycles and singular point quantities for a 3D Lotka–Volterra system. Appl. Math. Comput. 217, 8856–8859...
    • 46. Wang, Q., Huang, W.: The equivalence between singular point quantities and Liapunov constants on center manifold. Adv. Differ. Equ. 2012,...
    • 47. Wang, Q., Liu, Y., Chen, H.: Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems. Bull. Sci. Math. 134, 786–798...
    • 48. Xiao, D., Li, W.: Limit cycles for the competitive three-dimensional Lotka–Volterra system. J. Differ. Equ. 164, 1–15 (2000)
    • 49. Yu, P., Corless, R.: Symbolic computation of limit cycles associated with Hilbert’s 16th problem. Commun. Nonlinear Sci. Numer. Simul....
    • 50. Yu, P., Han, M.: Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation. Appl. Math....
    • 51. Yu, P., Tian, Y.: Twelve limit cycles around a singular point in a planar cubic-degree polynomial system. Commun. Nonlinear Sci. Numer....
    • 52. Ye, Y., Ye, W.: Cubic Kolmogorov systems with two limit cycles surrounding the same focus. Ann. Difler. Equ. 1, 201–207 (1985)
    • 53. Yu, Y., Zhang, S.: Hopf bifurcation analysis of the Lü system. Chaos Soliton. Fract. 21, 1215–1220 (2004)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno