Ir al contenido

Documat


Khasminskii Approach for Ã-Caputo Fractional Stochastic Pantograph Problem

  • Manar A. Alqudah [2] ; Hamid Boulares [3] ; Bahaaeldin Abdalla [1] ; Thabet Abdeljawad [4]
    1. [1] Prince Sultan University

      Prince Sultan University

      Arabia Saudí

    2. [2] Princess Nourah Bint Abdulrahman University
    3. [3] University of 8 May 1945 Guelma
    4. [4] Prince Sultan University, China Medical University, Kyung Hee University, Sefako Makgatho Health Sciences University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this manuscript, we study an averaging principle for fractional stochastic pantograph differential equations (FSDPEs) in the ψ-sense accompanied by Brownian movement.

      Under certain assumptions, we are able to approximate solutions for FSPEs by solutions to averaged stochastic systems in the sense of mean square. Analysis of system solutions before and after the average allows extending the classical Khasminskii approach to random fractional differential equations in the sense of ψ-Caputo. For clarity, we present at the end an applied example to facilitate the clarification of the theoretical results obtained.

  • Referencias bibliográficas
    • 1. Khasminskii, R.Z.: On the principle of averaging the Itoˆ stochastic differential equations. Kibernetika 4, 260–279 (1968)
    • 2. El-Tawil, Magdy A., Sohaly, M.A.: Mean square convergent three points finite difference scheme for random partial differential equations....
    • 3. Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., Sohaly, M.A.: Approximating the solution Stochastic process of the random Cauchy one-dimensional...
    • 4. Sivasankar, S., Udhayakumar, R.: Discussion on existence of mild solutions for Hilfer fractional neutral stochastic evolution equations...
    • 5. Dineshkumar, C., Udhayakumar, R.: Results on approximate controllability of fractional stochastic Sobolev-type Volterra-Fredholm integro-differential...
    • 6. Ma, Y.K., Dineshkumar, C., Vijayakumar, V., Udhayakumar, R., Shukla, A., Nisar, K.S.: Approximate controllability of Atangana–Baleanu fractional...
    • 7. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Shukla, A., Nisar, S.K.: New discussion regarding approximate controllability for Sobolev-type...
    • 8. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Anurag, S., Nisar, S.K.: Discussion on the approximate controllability of nonlocal fractional...
    • 9. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481...
    • 10. da Sousa, J.V.S., de Oliveira, E.C.: On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numerical Simulat. 60, 72–91 (2018)
    • 11. da Sousa, J.V.S., de Oliveira, E.C.: Leibniz type rule: ψ-Hilfer fractional operator. Commun. Nonlinear Sci. Numerical Simulat. 77, 305–311...
    • 12. Jarad, F., Abdeljawad, T., Shah, K.: On the weighted fractional operators of a function with respect to another function. Fractals 28,...
    • 13. Jarad, F., Abdeljawad, T.: Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst. Ser. S 13, 709–722 (2020)
    • 14. Almeida, R., Malinowska, A.B., Teresa, M., Monteiro, T.: Fractional differential equations with a Caputo derivative with respect to a...
    • 15. Mouy, M., Boulares, H., Alshammari, S., Alshammari, M., Laskri, Y., Mohammed,W.W.: On averaging principle for Caputo–Hadamard fractional...
    • 16. Chen, L., Hu, F., Zhu, W.: Stochastic dynamics and fractional optimal control of quasi integrable Hamiltonian systems with fractional...
    • 17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
    • 18. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers,...
    • 19. Wu, A., Zeng, Z.: Boundedness, Mittag-Leffler stability and asymptotical ω-periodicity of fractionalorder fuzzy neural networks. Elsevier,...
    • 20. Fox, L., Mayers, D.F., Ockendon, J.R., Tayler, A.B.: On a functional differential equation. IMA J. Appl. Math. 8(3), 271–307 (1971)
    • 21. Hale, J.: Theory of Functional Differential Equations. Springer-Verlag, New York (1977)
    • 22. Iserles, A.: On the generalized pantograph functional-differential equation. European J. Appl. Math. 4(1), 1–38 (1993)
    • 23. Kato, T.: Asymptotic behavior of solutions of the functional differential equation y (x) = ay(λx) + by(x). In: Delay and functional...
    • 24. Mahler, K.: On a special functional equation. J. London Math. Soc. 15, 115–123 (1940)
    • 25. Ockendon, J.R., Tayler, A.B.: The dynamics of a current collection system for an electric locomotive. Proc. Roy. Soc. Lond. A 322, 447–468...
    • 26. Agarwal, R.P., Zhou, Y., He, Y.: Existence of fractional functional differential equations. Comput. Math. Appl. 59(3), 1095–1100 (2010)
    • 27. Hallaci, A., Boulares, H., Ardjouni, A., Chaoui, A.: On the study of fractional differential equations in a weighted Sobolev space. Bull....
    • 28. Ardjouni, A., Boulares, H., Djoudi, A.: Stability of nonlinear neutral nabla fractional difference equations. Commun. Optim. Theory 2018,...
    • 29. Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press, New York (1999)
    • 30. Zou, G., Wang, B.: On the study of stochastic fractional-order differential equation systems, (2016)
    • 31. Zhang, X.M., Agarwal, P., Liu, Z.H., et al.: Existence and uniqueness of solutions for stochastic differential equations of fractional-order...
    • 32. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno