Ir al contenido

Documat


Discussion on Existence of Mild Solutions for Hilfer Fractional Neutral Stochastic Evolution Equations Via Almost Sectorial Operators with Delay

  • S. Sivasankar [1] ; R. Udhayakumar [1]
    1. [1] Vellore Institute of Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we formulate a new set of sufficient conditions for the existence of mild solutions for Hilfer fractional neutral stochastic evolution equations via almost sectorial operators with delay. The primary results are obtained from the properties of fractional calculus, stochastic analysis theory, the measure of noncompactness, and the fixed point technique. Firstly, we demonstrate the existence of mild solutions for Hilfer fractional neutral stochastic evolution equations via an almost sectorial operator with delay by using the Mönch fixed point theorem. The main result is finally demonstrated using an example.

  • Referencias bibliográficas
    • 1. Almalahi, M.A., Panchal, S.K.: On the Theory of ψ-Hilfer Nonlocal Cauchy Problem. J. Sib. Fed. Univ. Math. Phys. 14(2), 161–177 (2021)
    • 2. Almalahi, M.A., Bazighifan, O., Panchal, S.K., Askar, S.S., Oros, G.I.: Analytical study of two nonlinear coupled hybrid systems involving...
    • 3. Diethelm, K.: The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo...
    • 4. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Shukla, A., Nisar, K.S.: A note on approximate controllability for nonlocal fractional...
    • 5. Dineshkumar, C., Udhayakumar, R.: New results concerning to approximate controllability of Hilfer fractional neutral stochastic delay integro-differential...
    • 6. Evans, L.C.: An Introduction to Stochastic Differential Equations. University of California, Berkeley, Berkeley, CA (2013)
    • 7. Gu, H., Trujillo, J.J.: Existence of integral solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257,...
    • 8. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)
    • 9. Jaiswal, A., Bahuguna, D.: Hilfer fractional differential equations with almost sectorial operators. Differ. Equ. Dyn. Syst. (2020). https://doi.org/10.1007/s12591-020-00514-y
    • 10. Ji, S., Li, G., Wang, M.: Controllability of impulsive differential systems with nonlocal conditions. Appl. Math. Comput. 217, 6981–6989...
    • 11. Karthikeyan, K., Debbouche, A., Torres, D.F.M.: Analysis of Hilfer fractional integro-differential equations with almost sectorial operators....
    • 12. Kavitha, K., Vijayakumar, V., Udhayakumar, R.: Results on controllability on Hilfer fractional neutral differential equations with infinite...
    • 13. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Nisar, K.S.: Result on the existence of Hilfer fractional neutral evolution equations with...
    • 14. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
    • 15. Lakshmikantham, V., Vatsala, A.S.: Basic theory of fractional differential equations. Nonlinear Anal. Theory Methods Appl. 69(8), 2677–2682...
    • 16. Li, F.: Mild solutions for abstract differential equations with almost sectorial operators and infinite delay. Adv. Differ. Equ. 2013(327),...
    • 17. Ma, X., Shu, X.B., Mao, J.: Existence of almost periodic solutions for fractional impulsive neutral stochastic differential equations...
    • 18. Mainardi, F., Paraddisi, P., Gorenflo, R.: Probability Distributions Generated by Fractional Diffusion Equations. In: Kertesz, J., Kondor,...
    • 19. Mao, X.: Stochastic Differential Equations and Applications. Horwood, Chichester (1997)
    • 20. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993)
    • 21. Mohan Raja, M., Vijayakumar, V., Udhayakumar, R., Zhou, Y.: A new approach on the approximate controllability of fractional differential...
    • 22. Mohan Raja, M., Vijayakumar, V.: New results concerning to approximate controllability of fractional integro-differential evolution equations...
    • 23. Mönch.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 4(5),...
    • 24. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl. Math. Sci. Volume 44, New York, Springer...
    • 25. Periago, F., Straub, B.: A functional calculus for almost sectorial operators and applications to abstract evolution equations. J. Evol....
    • 26. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
    • 27. Ramos, P.S., Sousa, J.V.C., Capelas de Oliveira, E.: Existence and uniqueness of mild asolutions for quasi-linear fractional integro-differential...
    • 28. Sakthivel, R., Revathi, P., Ren, Y.: Existence of solutions for nonlinear fractional stochastic differential equations. Nonlinear Anal....
    • 29. Sivasankar, S., Udhayakumar, R.: A note on approximate controllability of second-order neutral stochastic delay integro-differential evolution...
    • 30. Sivasankar, S., Udhayakumar, R.: Hilfer fractional neutral stochastic volterra integro-differential inclusions via almost sectorial operators....
    • 31. Sivasankar, S., Udhayakumar, R.: New outcomes regarding the existence of Hilfer fractional stochastic differential systems via almost...
    • 32. Sousa, J.V.C., Jarad, F., Abdeljawad, T.: Existence of mild solutions to Hilfer fractional evolution equations in Banach space. Ann. Funct....
    • 33. Sousa, J.V.C., Capelas de Oliveira, E.: On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. (2017). https://doi.org/10.1016/j.cnsns.2018.01.005.
    • 34. Sousa, J.V.C., Oliveira, D.S., Capelas de Oliveira, E.: A note on the mild solutions of Hilfer impulsive fractional differential equations....
    • 35. Suwan, I., Abdo, M.S., Abdeljawad, T., Matar, M.M., Boutiara, B., Almalahi, M.A.: Existence theorems for -fractional hybrid systems with...
    • 36. Varun Bose, C.S., Udhayakumar, R.: A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators....
    • 37. Varun Bose, C.B.S., Udhayakumar, R.: Existence of Mild Solutions for Hilfer Fractional Neutral Integro-Differential Inclusions via Almost...
    • 38. Wang, J., Zhou, Y.: Existence and Controllability results for fractional semilinear differential inclusions. Nonlinear Anal. Real World...
    • 39. Wang, J.R., Fin, Z., Zhou, Y.: Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces. J....
    • 40. Yang, M., Wang, Q.: Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract....
    • 41. Zhang, L., Zhou, Y.: Fractional Cauchy problems with almost sectorial operators. Appl. Math. Comput. 257, 145–157 (2014)
    • 42. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
    • 43. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Elsevier, New York (2015)
    • 44. Zhou, Y.: Infinite interval problems for fractional evolution equations. Mathematics 10(6), 900, 1-13 (2022)
    • 45. Zhou, M., Li, C., Zhou, Y.: Existence of mild solutions for Hilfer fractional differential evolution equations with almost sectorial operators....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno