Ir al contenido

Documat


On Fractional Integro-differential Equations with State-Dependent Delay and Non-Instantaneous Impulses

  • Autores: Khalida Aissani, Mouffak Benchohra, Nadia Benkhettou
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 21, Nº. 1, 2019, págs. 61-75
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462019000100061
  • Enlaces
  • Resumen
    • español

      Resumen En este artículo, demostramos la existencia de soluciones mild de ecuaciones integrodiferenciales fraccionarias con retardo dependiente del estado e impulsos no instantáneos. Los resultados de existencia se obtienen bajo condiciones respecto de la medida de Kuratowski de no compacidad. También se entrega un ejemplo para ilustrar los resultados.

    • English

      Abstract In this paper, we prove the existence of mild solution of the fractional integro-differential equations with state-dependent delay with not instantaneous impulses. The existence results are obtained under the conditions in respect of Kuratowski’s measure of noncompactness. An example is also given to illustrate the results.

  • Referencias bibliográficas
    • Abbas, S.,Benchohra, M.,Graef, J.,Henderson, J.. (2018). Implicit Fractional Differential and Integral Equations; Existence and Stability....
    • Abbas, S.,Benchohra, M.,N’Guérékata, G.M.. (2012). Topics in Fractional Differential Equations. Springer. New York.
    • Abbas, S.,Benchohra, M.,N’Guérékata, G.M.. (2015). Advanced Fractional Differential and Integral Equations. Nova Science Publishers. New York....
    • Agarwal, R. P.,Hristova, S.,O’Regan, D.. (2017). Non-instantaneous Impulses in Differential Equations. Springer. Cham.
    • Agarwal, R. P.,Meehan, M.,O’Regan, D.. (2001). Fixed Point Theory and Applications. Cambridge University Press. Cambridge.
    • Agarwal, R. P.,Benchohra, M.,Slimani, B. A.. (2008). Existence results for differential equations with fractional order impulses. Mem. Differential...
    • Anguraj, A.,Karthikeyan, P.. (2010). Anti-periodic boundary value problem for impulsive fractional integro differential equations. Fract....
    • Anguraj, A.,Kanjanadevi, S.. (2016). Existence results for fractional non-instantaneous impulsive integro-differential equations with nonlocal...
    • Anguraj, A.,Kanjanadevi, S.. (2017). Non-instantaneous impulsive fractional neutral differential equations with state-dependent delay. Progr....
    • Balachandran, K.,Kiruthika, S.. (2010). Existence of solutions of abstract fractional impulsive semilinear evolution equations. Electron....
    • Balachandran, K.,Kiruthika, S.,Trujillo, J. J.. (2011). Existence results for fractional impulsive integrodifferential equations in Banach...
    • Baleanu, D.,Diethelm, K.,Scalas, E.,Trujillo, J. J.. (2012). Fractional Calculus Models and Numerical Methods. World Scientific Publishing....
    • Banás, J.,Goebel, K.. (1980). Measures of Noncompactness in Banach Spaces, of Lecture Notes in Pure and Applied Mathematics. Marcel Dekker....
    • Benchohra, M.,Henderson, J.,Ntouyas, S. K.. (2006). Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation. New York....
    • Benchohra, M.,Litimein, S.. (2018). Existence results for a new class of fractional integro-differential equations with state dependent delay....
    • Bothe, D.. (1998). Multivalued perturbations of m-accretive differential inclusions. Israel J. Math.. 108. 109
    • Debnath, L.,Bhatta, D.. (2007). Integral Transforms and Their Applications. CRC Press.
    • Diethelm, K.. (2010). The Analysis of Fractional Differential Equations. Springer. Berlin.
    • Gautam, G. R.,Dabas, J.. (2014). Existence result of fractional functional integro-differential equation with not instantaneous impulse. Int....
    • Hale, J. K.,Kato, J.. (1978). Phase space for retarded equations with infinite delay. Funk. Ekvacioj. 21. 11-41
    • Heinz, H. P.. (1983). On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions....
    • Hernández, E.,Prokopczyk, A.,Ladeira, L.. (2006). A note on partial functional differential equations with state-dependent delay. Nonlinear...
    • Hernández, E.,O’Regan, D.. (2013). On a new class of abstract impulsive differential equations. Proc. Amer. Math. Soc.. 141. 1641
    • Hilfer, R.. (2000). Applications of Fractional Calculus in Physics. World Scientific. Singapore.
    • Hino, Y.,Murakami, S.,Naito, T.. (1991). Functional Differential Equations with Unbounded Delay. Springer-Verlag. Berlin.
    • Kilbas, A. A.,Srivastava, Hari M.,Trujillo, Juan J.. (2006). Theory and Applications of Fractional Differential Equations. Elsevier Science...
    • Kumar, P.,Haloi, R.,Bahuguna, D.,Pandey, D. N.. (2016). Existence of solutions to a new class of abstract non-instantaneous impulsive fractional...
    • Lakshmikantham, V.,Bainov, D. D.,Simeonov, P. S.. (1989). Theory of Impulsive Differential Equations. World Scientific. NJ.
    • Li, P.,Xu, C. J.. (2015). Mild solution of fractional order differential equations with not instantaneous impulses. Open Math. 13. 436
    • Mainardi, F.,Paradisi, P.,Gorenflo, R.. (2000). Econophysics: An Emerging Science. Kluwer Academic Publishers. Dordrecht, The Netherlands.
    • Meghnafi, M.,Benchohra, M.,Aissani, K.. (2015). Impulsive fractional evolution equations with state-dependent delay. Nonlinear Stud.. 22....
    • Miller, K. S.,Ross, B.. (1993). An Introduction to the Fractional Calculus and Differential Equations. John Wiley. New York.
    • Mönch, H.. (1980). Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal.....
    • Pandey, D. N.,Das, S.,Sukavanam, N.. (2014). Existence of solution for a second-order neutral differential equation with state dependent delay...
    • Pierri, M.,O’Regan, D.,Rolnik, V.. (2013). Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses....
    • Podlubny, I.. (1999). Fractional Differential Equations. Academic Press. San Diego.
    • Samko, S. G.,Kilbas, A. A.,Marichev, O. I.. (1993). Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach. Yverdon....
    • Tarasov, V. E.. (2010). Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer. Beijing....
    • Zhou, Y.. (2016). Fractional Evolution Equations and Inclusions: Analysis and Control. Academic Press Elsevier.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno