Ir al contenido

Documat


Several Continuities of a Pullback Random Attractor for Stochastic Non-Autonomous Zakharov Lattice Equations

  • Yangrong Li [1] ; Lin Zhang [1]
    1. [1] Southwest University

      Southwest University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study the dynamics of stochastic Zakharov lattice equations driven by multiplicative white noise and time-dependent forces. We first deduce a cocycle (nonautonomous random dynamical system) on the product space of real and complex Hilbert spaces. We then prove the cocycle has a pullback random attractor parameterized by time and sample. We mainly establish several continuities including residual dense continuity, diagonally-invariant continuity, full stochastic continuity and full pre-continuity of the pullback random attractor on the time-sample plane with respect to the Hausdorff metric. The key point in the proof is to verify the time-space-sample continuity of the cocycle and local compactness of the pullback random attractor

  • Referencias bibliográficas
    • 1. Abdallah, A.Y.: Dynamics of second order lattice systems with almost periodic nonlinear part. Qual. Theory Dyn. Syst.20(2), Paper No: 58...
    • 2. Arnold, A.: Random Dynamical Systems. Springer, New York (1998)
    • 3. Bai, Y., Zhou, S.F.: Random attractor of stochastic Zakharov lattice system. J. Appl. Anal. Comput. 1(2), 155–171 (2011)
    • 4. Bates, P.W., Lu, K.N., Wang, B.X.: Random attractors for stochastic reaction–diffusion equations on unbounded domains. J. Differ. Equ....
    • 5. Caraballo, T., Morillas, F., Valero, J.: Attractors of a stochastic lattice dynamical systems with multiplicative noise and non-Lipschitz...
    • 6. Caraballo, T., Carvalho, A.N., Da Costa, H.B.: Equi-attraction and continuity of attractors for skewproduct semiflows. Discret. Contin....
    • 7. Carvalho, A.N., Langa, J.A., Robinson, J.C.: Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems. Appl. Math. Sciences,...
    • 8. Colin, T., Ebrard, G., Gallice, G., Texier, B.: Justification of the Zakharov model from Klein–Gordonwave systems. Commun. Partial Differ....
    • 9. Cui, H.Y., Langa, J.A., Li, Y.R.: Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems. J. Dyn....
    • 10. Cui, H.Y., Kloeden, P.E., Wu, F.K.: Pathwise upper semi-continuity of random pullback attractors along the time axis. Phys. D: Nonlinear...
    • 11. Dong, S.J.: Asymptotic behavior of the solution to the Klein–Gordon–Zakharov model in dimension two. Commun. Math. Phys. 384, 587–607...
    • 12. Fan, X.: Attractors for a damped stochastic wave equation of Sine–Gordon type with sublinear multiplicative noise. Stoch. Anal. Appl....
    • 13. Gu, A.H., Kloeden, P.E.: Asymptotic behavior of a nonautonomous p-Laplacian lattice system. Int. J. Bifur. Chaos26, Paper No: 1650174...
    • 14. Han, X.Y., Shen, W.X., Zhou, S.F.: Random attractors for stochastic lattice dynamical systems in weighted spaces. J. Differ. Equ. 250,...
    • 15. Hoang, L.T., Olson, E.J., Robinson, J.C.: On the continuity of global attractors. Proc. Am. Math. Soc. 143(10), 4389–4395 (2015)
    • 16. Hoang, L.T., Olson, E.J., Robinson, J.C.: Continuity of pullback and uniform attractors. J. Differ. Equ. 264(6), 4067–4093 (2018)
    • 17. Li, Y.R., Xia, H.: Continuity in expectation of odd random attractors for stochastic Kuramoto– Sivashinsky equations. Discret. Contin....
    • 18. Li, Y.R., Yang, S., Zhang, Q.H.: Continuous Wong-Zakai approximations of random attractors for quasi-linear equations with nonlinear noise....
    • 19. Li, Y.R., Yang, S.: Almost continuity of a pullback random attractor for the stochastic g-Navier–Stokes equation. Dyn. Partial Differ....
    • 20. Li, Y.R., Yang, S.: Hausdorff sub-norm spaces and continuity of random attractors for bi-stochastic g-Navier–Stokes equations with respect...
    • 21. Li, Y.R., Yang, S., Long, G.Q.: Continuity of random attractors on a topological space and fractional delayed FitzHugh–Nagumo equations...
    • 22. Li, Y.R., Yang, S., Caraballo, T.: Optimization and convergence of numerical attractors for discrete-time quasi-linear lattice system....
    • 23. Lu, K.N., Wang, B.X.: Wong–Zakai approximations and long term behavior of stochastic partial differential equations. J. Dyn. Differ. Equ....
    • 24. Merle, F.: Lower bounds for the blowup rate of solutions of the Zakharov equation in dimension two. Commun. Pure Appl. Math. 49, 765–794...
    • 25. Merle, F.: Blow-up results of Viriel type for Zakharov equations. Commun. Math. Phys. 175, 433–455 (1996)
    • 26. Tang, L., Zhou, S.F., Han, Z.F.: Random exponential attractor for a non-autonomous Zakharov lattice system with multiplicative white noise....
    • 27. Wang, B.X.: Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J. Differ....
    • 28. Wang, X.X., Cui, H.Y.: On the residual continuity of global attractors. Mathematics 10(9), Paper No: 1444 (2022)
    • 29. Wang, S.L., Li, Y.R.: Longtime robustness of pullback random attractors for stochastic magnetohydrodynamics equations. Physica D 382,...
    • 30. Wannan, R.T., Abdallah, A.Y.: Long-time behavior of non-autonomous FitzHugh–Nagumo lattice systems. Qual. Theory Dyn. Syst. 19(3), Paper...
    • 31. Yin, F., Zhou, S., OuYang, Z., Xiao, C.: Attractor for lattice system of dissipative Zakharov equation. Acta Math. Sin. 25, 321–342 (2005)
    • 32. Zhou, S.F., Bai, Y.: Random attractor and upper semi-continuity for Zakharov lattice systems with multiplicative white noises. J. Differ....
    • 33. Zhou, S.F., Han, X.Y.: Uniform exponential attractors for non-autonomous KGS and Zakharov lattice systems with quasiperiodic external...
    • 34. Zhou, S.F., Huang, J.W., Han, X.Y.: Compact kernel sections for dissipative non-autonomous Zakharov equation on infinite lattices. Commun....
    • 35. Zhu, Z.Q., Sang, Y.M., Zhao, C.D.: Pullback attractors and invariant measures for the discrete Zakharov equations. J. Appl. Anal. Comput....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno