Ir al contenido

Documat


Long-Time Behavior of Non-Autonomous FitzHugh–Nagumo Lattice Systems

  • Wannan, Rania T [2] ; Abdallah, Ahmed Y [1]
    1. [1] University of Jordan

      University of Jordan

      Jordania

    2. [2] Palestine Technical University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 3, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00414-0
  • Enlaces
  • Resumen
    • In Abdallah (J Appl Math 3: 273–288, 2005), Boughoufala and Abdallah (Disc Cont Dyn Ays B), Li and Wang (J Math Anal Appl 325: 141–156, 2007), Vleck and Wang (Physica D 212: 317–336, 2005), Wang (Int J Bifurcation Chaos 17: 1673–1685, 2007) the existence of global attractors for autonomous and non-autonomous deterministic FitzHugh–Nagumo lattice dynamical systems (LDSs) with nonlinear parts of the form Giui have been studied. Here the existence of the uniform global attractor for such non-autonomous systems with nonlinear parts of the form Giuk∣k∈Iiq is carefully investigated, where such nonlinear parts present the main difficulty of this work.

  • Referencias bibliográficas
    • 1. Abdallah, A.Y.: Attractors for first order lattice systems with almost periodic nonlinear part. Disc. Cont. Dyn. Sys. B 25, 1241–1255 (2020)
    • 2. Abdallah, A.Y.: Long-time behavior for second order lattice dynamical systems. Acta Appl. Math. 106, 47–59 (2009)
    • 3. Abdallah, A.Y.: Upper semicontinuity of the attractor for lattice dynamical systems of partly dissipative reaction-diffusion systems. J....
    • 4. Abdallah, A.Y.: Uniform global attractors for first order non-autonomous lattice dynamical systems. Proc. Amer. Math. Soc. 138, 3219–3228...
    • 5. Abdallah, A.Y., Wannan, R.T.: Second order non-autonomous lattice systems and their uniform attractors. Comm. Pure Appl. Anal. 18, 1827–1846...
    • 6. Bates, P.W., Lu, K., Wang, B.: Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 11, 143–153 (2001)
    • 7. Boughoufala, A. M., Abdallah, A. Y.: Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts, Disc. Cont. Dyn....
    • 8. Caraballo, T., Morillas, F., Valero, J.: Random attractors for stochastic lattice systems with nonLipschitz nonlinearity. J. Diff. Eqs....
    • 9. Caraballo, T., Morillas, F., Valero, J.: Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz...
    • 10. Chate, H., Courbage, M.: (Eds.), “Lattice Systems,” Phys. D 103 1-4 (1997), 1-612
    • 11. Chepyzhov, V.V., Vishik, M.I.: Attractors of non-autonomous dynamical systems and their dimension. J. Math. Pures Appl. 73, 279–333 (1994)
    • 12. Chow, S.N.: Lattice Dynamical Systems, Lecture Notes in Mathematics, Dynamical System, pp. 1–102. Springer, Berlin (2003)
    • 13. Gu, A., Li, Y.: Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions....
    • 14. Gu, A., Li, Y., Li, J.: Random attractors on lattice of stochastic FitzHugh–Nagumo systems driven by β-stable Lévy noises, Internat. J....
    • 15. Han, X.: Asymptotic behavior of stochastic partly dissipative lattice systems in weighted spaces. Int. J. Diff. Eqs. 2011, 23 (2011)
    • 16. Huang, J.: The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises. Phys. D. 233, 83–94...
    • 17. Huang, J., Han, X., Zhou, S.: Uniform attractors for non-autonomous Klein–Gordon–Schrödinger lattice systems. Appl. Math. Mech. Engl....
    • 18. Jia, X., Zhao, C., Yang, X.: Global attractor and Kolmogorov entropy of three component reversible Gray-Scott model on infinite lattices....
    • 19. Levitan, B.M., Zhikov, V.V.: Almost Periodic Functions and Differential Equations. Cambridge Univ. Press, Cambridge (1982)
    • 20. Li, H., Sun, L.: Upper semicontinuity of attractors for small perturbations of Klein–Gordon– Schrödinger lattice system. Adv. Diff. Equ....
    • 21. Li, X., Wang, D.: Attractors for partly dissipative lattice dynamic systems in weighted spaces. J. Math. Anal. Appl. 325, 141–156 (2007)
    • 22. Oliveira, J., Pereira, J., Perla, M.: Attractors for second order periodic lattices with nonlinear damping. J. Diff. Eqs. Appl. 14, 899–921...
    • 23. Pazy, A.: ‘Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44....
    • 24. Temam, R.: Infinite-dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68, 2nd edn. Springer,...
    • 25. Van Vleck, E., Wang, B.: Attractors for lattice FitzHugh–Nagumo systems. Phys. D 212, 317–336 (2005)
    • 26. Wang, B.: Asymptotic behavior of non-autonomous lattice systems. J. Math. Anal. Appl. 331, 121–136 (2007)
    • 27. Wang, B.: Dynamical behavior of the almost-periodic discrete FitzHugh–Nagumo systems. Int. J. Bifurc. Chaos 17, 1673–1685 (2007)
    • 28. Wang, Y., Liu, Y., Wang, Z.: Random attractors for partly dissipative stochastic lattice dynamical systems. J. Diff. Eqs. Appl. 14, 799–817...
    • 29. Wang, Z., Zhou, S.: Random attractors for non-autonomous stochastic lattice FitzHugh–Nagumo systems with random coupled coefficients....
    • 30. Yang, X., Zhao, C., Cao, J.: Dynamics of the discrete coupled nonlinear Schrödinger–Boussinesq equations. Appl. Math. Comp. 219, 8508–8524...
    • 31. Zhao, C., Zhou, S.: Compact uniform attractors for dissipative lattice dynamical systems with delays. Disc. Cont. Dyn. Sys 21, 643–663...
    • 32. Zhou, S.: Attractors for first order dissipative lattice dynamical systems. Phys. D 178, 51–61 (2003)
    • 33. Zhou, S.: Attractors and approximations for lattice dynamical systems. J. Diff. Eqs. 200, 342–368 (2004)
    • 34. Zhou, S., Zhao, M.: Uniform exponential attractor for second order lattice system with quasi-periodic external forces in weighted space,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno